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Abstract

Scholars have sought to quantify the extent of inequality which is inherited from past generations in many different ways,

including a large body of work on intergenerational mobility and inequality of opportunity. This paper makes three

contributions to that broad literature. First, we show that many of the most prominent approaches to measuring mobility

or inequality of opportunity fit within a general framework which involves, as a first step, a calculation of the extent to

which inherited circumstances can predict current incomes. The importance of prediction has led to recent applications

of machine learning tools to solve the model selection challenge in the presence of competing upward and downward

biases. Our second contribution is to apply transformation trees to the computation of inequality of opportunity. Because

the algorithm is built on a likelihood maximization that involves splitting the sample into groups with the most salient

differences between their conditional cumulative distributions, it is particularly well-suited to measuring ex-post inequality

of opportunity, following Roemer (1998). Our third contribution is to apply the method to data from South Africa, arguably

the world’s most unequal country, and find that almost threequarters of its current inequality is inherited from

predetermined circumstances, with race playing the largest role, but parental background also making an important

contribution.
Keyword: Inequality, opportunity, mobility, transformation trees, South Africa.
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Abstract: Scholars have sought to quantify the extent of inequality which is inherited from past 
generations in many different ways, including a large body of work on intergenerational 
mobility and inequality of opportunity.  This paper makes three contributions to that 
broad literature. First, we show that many of the most prominent approaches to 
measuring mobility or inequality of opportunity fit within a general framework which 
involves, as a first step, a calculation of the extent to which inherited circumstances can 
predict current incomes. The importance of prediction has led to recent applications of 
machine learning tools to solve the model selection challenge in the presence of 
competing upward and downward biases. Our second contribution is to apply 
transformation trees to the computation of inequality of opportunity. Because the 
algorithm is built on a likelihood maximization that involves splitting the sample into 
groups with the most salient differences between their conditional cumulative 
distributions, it is particularly well-suited to measuring ex-post inequality of opportunity, 
following Roemer (1998). Our third contribution is to apply the method to data from 
South Africa, arguably the world’s most unequal country, and find that almost three-
quarters of its current inequality is inherited from predetermined circumstances, with 
race playing the largest role, but parental background also making an important 
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1  Introduction 

People’s educational and professional achievements, their incomes, and their wealth are generally 

not independent of their backgrounds. Various attributes that are determined at or before birth – 

such as biological sex; race or ethnicity; parental income and other aspects of family background - 

are powerful predictors of a person’s own economic outcomes later in life.  

Economists have typically considered this an important fact: a copious literature has sought to 

quantify the extent to which inherited or pre-determined characteristics shape people’s life 

outcomes, and to compare results across societies or over time. There is very little in that literature 

that attempts to disentangle the multiple causal pathways or to estimate full structural models with 

behavioral parameters, because it was quickly understood that the identification problems are 

almost insurmountable.2  

Although there are obviously multiple studies that seek to estimate the causal effects of specific 

characteristics, - say, race or gender – on specific outcomes – say, wages or job interviews – all of 

the dominant approaches used to quantify the overall extent to which the variation in, say, current 

incomes reflects the effects of inherited factors, have been descriptive. These approaches include 

the literatures on intergenerational mobility; inequality of opportunity; and sibling correlations.  

This paper contributes to that broad literature in three ways.  First, we note that all of these 

descriptive approaches rely on using observed inherited characteristics to predict future outcomes 

– hereafter incomes, for simplicity. We suggest a simple general framework for the measurement 

of inherited inequality which relies on comparisons of inequality in observed and predicted 

incomes, and show that a wide range of measures in current use are special cases.   

 
2 Parental education, for example, will generally affect both the quantity and quality of the parent’s time 
inputs into the child’s development at home. It will also affect, or interact with, school choice and 
neighborhood location, each of which are likely to have their own separate effects. It may also affect the 
child’s employment and marriage (or household formation more broadly) opportunities later in life. Some of 
these effects of parental education will operate through parental income, others will operate directly. They 
will potentially operate differently across sexes, races or castes. They will likely interact with family wealth, 
separately from parental income. They may be confounded with genetic endowments, which are also 
transmitted separately. And so on. See Haveman and Wolfe (1995) for a classic discussion of (some of) these 
multiple pathways.  
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Once the central role of prediction is recognized, it is natural to consider options among modern 

data-driven (or machine learning) techniques, which have been shown to be more accurate 

predictors than many standard econometric approaches used historically (see, e.g., Mullainathan 

and Spiess, 2017). Specifically, conditional inference trees, random forests, and transformation 

trees are three highly promising approaches.  

Since conditional inference trees and random forests have already been used in this context (see 

Brunori, Hufe, and Mahler, 2023), we focus on transformation trees, which have recently been 

developed by Hothorn and Zeileis (2021). Our second contribution is thus to show that, because 

this approach provides a powerful algorithm to predict not only means, but full conditional 

distributions for different population subgroups, it is particularly well-suited to inequality 

decompositions that depend on differences in higher moments of the income distribution between 

subgroups, e.g., “ex-post” inequality of opportunity (Ex-post IOp). It also provides an optimal 

solution – in a well-defined statistical sense – to a problem that has bedeviled the literature(s) so 

far, namely the choice of model specification. 

To the best of our knowledge, ex-post IOp was first used empirically to estimate the share of 

inequality predicted by inherited circumstances by Checchi and Peragine (2010), with an application 

to Italy.3  But it draws on a rich theoretical tradition in normative economics that argues that equal 

opportunities are achieved when all individuals who exert the same degree of effort or 

responsibility can ultimately achieve the same outcomes, regardless of inherited circumstances 

(see, e.g., Roemer, 1993, 1998; Fleurbaey, 1994, 2008). Under some assumptions, the theory 

suggests, the appropriate degree of effort, once cleansed of the effects of circumstances, can be 

proxied by the relative position – that is, the quantile – of an individual in the income distribution 

of those that have the same inherited circumstances as she does – her “type”. (Roemer, 1998). 

Although this perspective – same efforts, same rewards – has considerable theoretical appeal (see, 

e.g., Fleurbaey and Peragine, 2013), it has hitherto faced serious empirical challenges which have 

severely limited its use in practice. Our proposed approach can significantly alleviate these 

challenges. That said, the attractiveness of the approach does not require adherence to the specific 

normative views embodied in the theoretical literature. Our results can also be interpreted in the 

 
3 See also Lefranc, Pistolesi, and Trannoy (2009). 
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spirit of alternative inequality decompositions, in which the between-groups term is not 

independent of within-group inequality.4 In our third contribution, we apply the method to South 

Africa, arguably the world’s most unequal country. We present the full decomposition, including 

the type-specific conditional distributions. We find that more than 70% of the country’s Gini 

coefficient of 0.6 is accounted for by inherited circumstances. 

The paper proceeds as follows.  The next section describes a general framework for the estimation 

of the importance of inherited inequality, of which the most common approaches in the 

measurement of mobility and inequality of opportunity are shown to be special cases. Section 3 

discusses the key empirical challenges faced by these approaches, focusing on model selection. 

Section 4 then introduces our own approach to estimating ex-post IOp using transformation trees 

as another case, and describes its operation.  

Section 5 describes our data and Section 6 presents results. These results include not only estimates 

of the share of current inequality in South Africa which are predicted by a set of inherited 

circumstances, but also (i) a schematic description of the population partition which generates the 

most salient cleavages in South African society (again, in a well-defined statistical sense); (ii) 

estimates of the conditional cumulative distributions by ‘type’ (or population sub-group); (iii) the 

implied decomposition of the density function into a mixture of these sub-group distributions; (iv) 

a Shapley-Shorrocks decomposition of the relative (predictive) importance of individual 

circumstances in the overall decomposition; and (v) an estimate of the lower-envelope of the 

decomposition, which corresponds to the maximand in Roemer’s original policy objective. It also 

compares our ex-post IOp results to ex-ante estimates from conditional inference trees and forests, 

as in Brunori, Hufe and Mahler (2023). Taken together, this set of analytical and visualization 

methods represent complementary tools that enable a deeper understanding of inequality of 

opportunity. Section 7 concludes. 

 

 
4 See Foster and Shneyerov (2000) and Ebert (2010) for discussions of why it might make sense to account for 
differences in the full distributions within groups – rather than just the means – when defining the between-
group term of the decomposition. 
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2.  Inherited inequality: a general framework 

Consider a population of N individuals, indexed by 𝑖𝑖 ∈ 𝒩𝒩 = {1, … ,𝑁𝑁}, each of whom is 

characterized by a current-generation outcome 𝑦𝑦𝑖𝑖; and a set of inherited characteristics, which we 

call circumstances (following Roemer, 1998). For individual i, these are represented by a k-

dimensional vector 𝒄𝒄𝒊𝒊. In general, many people may share the same vector of circumstances, and 

each of those groups is called a “type”. The population can then be exhaustively divided into a set 

of types, 𝐶𝐶 = {𝜏𝜏1, … , 𝜏𝜏𝑚𝑚, … , 𝜏𝜏𝑀𝑀}, where 𝜏𝜏𝑚𝑚: = {∀𝑖𝑖|𝒄𝒄𝒊𝒊 = 𝒄𝒄𝒎𝒎}, such that  ⋃ 𝜏𝜏𝑚𝑚𝑀𝑀
1 =  𝒩𝒩 and ⋂ 𝜏𝜏𝑚𝑚𝑀𝑀

1 =

∅. 𝐶𝐶 ∈ ℂ, the set of all possible partitions. 

A situation in which there is no inherited inequality is one in which the joint distribution {y, c} is 

characterized by 𝑦𝑦 ⊥ 𝒄𝒄. In that case, there is obviously no difference between the conditional 

income distributions obtained from that joint distribution: 

𝐹𝐹(𝑦𝑦|𝒄𝒄𝒍𝒍) = 𝐹𝐹(𝑦𝑦|𝒄𝒄𝒎𝒎),∀𝒄𝒄𝒍𝒍, 𝒄𝒄𝒎𝒎  ∈  𝐶𝐶 (1) 

 

If (1) does not hold, then the associations between the vector c and y across the population imply 

that the circumstances c have (some) predictive power over y. I.e., there exist non-constant 

prediction functions, 

𝑦𝑦 = 𝑓𝑓(𝒄𝒄, 𝜀𝜀),𝑓𝑓 ∈ ℱ (2) 

 

that outperform constant functions in predicting y out of sample.  

It is straightforward to see that most methods for estimating the intergenerational transmission of 

advantage currently in use revolve around estimating models of the general form (2), using different 

functions in the set of possible functions ℱ.  In addition, in many cases the final estimates are 

summarized by a comparison of inequality in current-generation income, 𝐼𝐼(𝑦𝑦) and inequality in the 

distribution of the incomes predicted by the inherited circumstance: 𝑦𝑦� = 𝑓𝑓(𝑐𝑐), 𝐼𝐼(𝑦𝑦�). In other 

words, measures of mobility or inequality of opportunity are often of the form  𝑂𝑂 = 𝑔𝑔�𝐼𝐼(𝑦𝑦�), 𝐼𝐼(𝑦𝑦)�. 

Intergenerational mobility 
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What generally distinguishes estimates of intergenerational mobility is the assumption that there 

is a single circumstance, namely the previous generation value of y, yp.5  Then 𝑓𝑓(𝒄𝒄, 𝜀𝜀) may for 

example take the form: 

y = 𝑓𝑓𝑀𝑀(𝑐𝑐, 𝜀𝜀) = 𝑒𝑒𝛼𝛼+𝛽𝛽 log𝑦𝑦𝑝𝑝+𝜀𝜀 

 

(3) 

 

Taking logarithms, equation (3) becomes the standard Galtonian regression that has been the 

workhorse of intergenerational mobility estimates from Solon (1992) to Chetty et al. (2014).  

Predicted income is then: 

𝑦𝑦�𝑀𝑀 = 𝑓𝑓𝑀𝑀(𝑐𝑐) = 𝑒𝑒𝛼𝛼�+𝛽𝛽� log𝑦𝑦𝑝𝑝+𝜎𝜎2 2⁄  

 

(4) 

 

Where, 𝜎𝜎 denotes the standard deviation of the residuals 𝜀𝜀. Now, although the regression 

coefficient �̂�𝛽 – the intergenerational elasticity – is often used as a summary index of persistence or 

“inheritability” (the opposite of mobility), another commonly used measure (which has the 

advantage of being equally sensitive to both margins), is the correlation coefficient between log𝑦𝑦 

and log𝑦𝑦𝑝𝑝. Since this coefficient is the square root of the R2 of the Galtonian regression, it can be 

written as a specific case of 𝑂𝑂 = 𝑔𝑔�𝐼𝐼(𝑦𝑦�), 𝐼𝐼(𝑦𝑦)�, namely: 

𝜌𝜌� = �𝐼𝐼(𝑦𝑦�𝑀𝑀)
𝐼𝐼(𝑦𝑦)        when     𝐼𝐼(𝑥𝑥) = 𝑉𝑉𝑉𝑉𝑉𝑉 log 𝑥𝑥  

(5) 

 

Noting that the rank of an observation 𝑥𝑥𝑖𝑖 in a distribution 𝐹𝐹(𝑥𝑥) is simply the quantile 𝑞𝑞𝑖𝑖 = 𝐹𝐹(𝑥𝑥𝑖𝑖), 

and that this cumulative distribution function is inversible, it is clear that there will also be a specific 

predictor  𝑓𝑓𝑅𝑅(𝑐𝑐, 𝜀𝜀) for rank-rank regression or correlation coefficients.  

Ex-ante inequality of opportunity 

The literature on inequality of opportunity has usually considered a vector (k >1) of circumstance 

variables, rather than a scalar.  When information on parental income or wealth is available, those 

variables can be elements in c. But they are complemented by others, such as ethnicity, sex, 

 
5 We say ‘generally’ because there are studies that include the incomes of more than one generation as 
circumstances (Olivetti, Paserman, and Salisbury, 2018). There are also studies that consider interactions with 
race. (e.g., Mazumder, 2014). 
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parental education or occupation, etc.6  Frequently, however, this approach has been used for 

societies or periods for which reliable information on parental income is not readily available.  

In that case too, scalar indices summarizing the extent of inheritability (here: inequality of 

opportunity) are often of the form 𝑂𝑂 = 𝑔𝑔�𝐼𝐼(𝑦𝑦�), 𝐼𝐼(𝑦𝑦)�. In the ex-ante parametric approach of 

Ferreira and Gignoux (2011) or Niehues and Peichl (2014), the logarithm of parental income in (3) 

is simply replaced by the vector of circumstances, and the prediction function is given by: 

𝑓𝑓𝐸𝐸𝐸𝐸(𝑐𝑐, 𝜀𝜀) = 𝑒𝑒𝛼𝛼+𝐶𝐶𝐶𝐶+𝜀𝜀 

 

(6) 

 

This generates a vector of predicted incomes analogous to that in (4) – without the Blackburn (2007) 

correction –  and the relative measure of inequality of opportunity is precisely:  

𝐼𝐼𝑂𝑂𝐼𝐼𝐸𝐸𝐸𝐸 =
𝐼𝐼(𝑦𝑦�𝐸𝐸𝐸𝐸)
𝐼𝐼(𝑦𝑦)  

(7) 

A version of Equation (7) can also describe the ex-ante non-parametric estimator of inequality of 

opportunity (Checchi and Peragine, 2010; Ferreira and Gignoux, 2011) when the prediction function 

is changed from (6) to (8):  

𝑓𝑓(𝑐𝑐, 𝜀𝜀) = � 𝑦𝑦𝑦𝑦𝐹𝐹(𝑦𝑦|𝒄𝒄)
1

0
 

(8) 

Equation (8) simply yields the conditional means for all those who share the same vector of 

circumstances c. So 𝐼𝐼�𝑦𝑦�𝐸𝐸𝐸𝐸(𝑛𝑛)� is simply computed over the smoothed distribution where individual 

incomes are replaced by the average incomes of all individuals who share the same vector of 

circumstances – that is, individuals in the same type. 7 

In fact, both the parametric and non-parametric prediction functions - (6) and (8) – are predicting 

type means, with the caveat that (6) imposes a linear functional form on the relationship between 

c and y.  The reference situation of equality of opportunity is therefore:  

𝜇𝜇(𝑦𝑦|𝒄𝒄𝒍𝒍) = 𝜇𝜇(𝑦𝑦|𝒄𝒄𝒎𝒎),∀𝒄𝒄𝒍𝒍, 𝒄𝒄𝒎𝒎  ∈  𝐶𝐶 

So, inequality of opportunity quantifies deviations from (9). 

(9) 

 
6 See Bjorklund, Jäntti, and Roemer (2012) for an example of IOp using parental income as a circumstance. 
7 See Foster and Shneyerov (2000).  
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Ex-post inequality of opportunity 

But equation (9) is clearly weaker than (1): it is implied by but does not imply (1). It is possible that 

two types have cumulative distribution functions (CDF) that are different but have the same mean. 

Since it is Equation (1) – full equality of the type-conditional distribution functions – that really 

implies and is implied by the orthogonality of income and circumstances, many authors have 

preferred empirical approaches that use estimates of the CDF, rather than just the mean, to either 

detect or measure inequality of opportunity. Lefranc, Pistolesi, and Trannoy (2009), for example, 

use stochastic dominance techniques to test for differences across type distribution functions, and 

thus the null hypothesis of equal opportunities.  

For measuring IOp, Checchi and Peragine (2010) propose to aggregate income differences across 

the quantiles of the conditional distributions, while abstracting from level differences across types. 

Their prediction function is given by: 

𝑓𝑓𝐸𝐸𝐸𝐸(𝑐𝑐, 𝜀𝜀) =
𝜇𝜇
𝜇𝜇𝑞𝑞
𝐹𝐹−1(𝑞𝑞|𝒄𝒄) (10) 

Since 𝑦𝑦𝑞𝑞𝑞𝑞 = 𝐹𝐹−1(𝑞𝑞|𝒄𝒄),  

𝐼𝐼(𝑦𝑦�𝐸𝐸𝐸𝐸) = �
𝜇𝜇
𝜇𝜇𝑞𝑞
𝐼𝐼𝑞𝑞�𝑦𝑦𝑞𝑞𝑞𝑞�dq 

1

𝑞𝑞=0

 
(11) 

And  

𝐼𝐼𝑂𝑂𝐼𝐼𝐸𝐸𝐸𝐸 =
𝐼𝐼(𝑦𝑦�𝐸𝐸𝐸𝐸)
𝐼𝐼(𝑦𝑦)  

(12) 

Equation (12) is analogous to (7), but uses (11) to predict incomes, rather than (6) or (8). In words, 

Checchi and Peragine (2010) compute inequality in predicted incomes by computing some 

inequality measure across types for each decile; then multiplying that inequality by the ratio of the 

overall mean to the quantile mean (again, computed across types), and finally aggregating across 

quantiles. IOp is, once again, the ratio of inequality in predicted incomes to observed inequality.  

The case for computing inequality of opportunity as horizontal gaps between cumulative 

distribution functions – as departures from the definition of equality of opportunity in (1) – can 

therefore be made with no reference to the notion of effort. There is no effort variable in equations 
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(10) – (12). Historically, this logic has appealed to theorists of equal opportunities because, under 

some assumptions, the relative degree of effort expended – or responsibility taken – by a person 

can be proxied by her relative position (quantile) in the income distribution of her type (see Roemer, 

1998). Under those assumptions, Equation (1) does not simply denote the orthogonality of 

outcomes and predetermined circumstances. It also corresponds to a situation in which people who 

exert the same degree of effort achieve the same outcomes.8 But the use of (12) as a meaningful 

measure of deviations from the ideal of incomes orthogonal to circumstances does not require 

adherence to the theory or its assumptions.  

3  The central empirical challenge: model selection  

Empirical applications of all three versions of the prediction problem described above may suffer 

from a variety of challenges, including data availability, measurement error (particularly) in 

variables such as parental income or occupation, small sample sizes, etc. More fundamentally, 

though, they all suffer from a model selection problem, and this is the issue this section focuses on.  

The intergenerational mobility literature makes most sense when interpreted as attempts to 

estimate, as accurately as possible, a descriptive measure of association between two variables. 

This may be a regression coefficient, a correlation coefficient, or some summary statistic from a 

transition matrix or copula. It is presumably understood that these parameter estimates do not 

represent – in any way, shape, or form – estimates of the causal effect of parental income on child 

income, since they are hopelessly biased by omitted variables with which parental incomes are 

bound to be correlated. So, they must clearly be interpreted as simple estimates of bivariate 

association.9 

In the IOp literature, where the explicit intent is to quantify the extent to which today’s inequality 

is inherited – that is, the extent to which inherited circumstances predict incomes today – authors 

 

8 These assumptions are: the degree of effort exerted is by definition orthogonal to circumstances; all 
circumstances are observable; the effect of luck cannot re-rank individuals in terms of income; and income is 
a monotonic function of effort (for a discussion see Roemer and Trannoy (2015)).  

9 Yet, as shown earlier, measures of association such as the correlation coefficient are very closely related to 
measures of the share of inequality predicted by the background variable – and are sometimes interpreted 
as such in the literature. 
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make use of additional background variables that might be available in the data. And as soon as one 

considers the use of additional background variables – which may be many and may consist of 

multiple categories – one faces the standard issue of model selection in the presence of two 

competing biases.  

The first bias arises from the partial observability of circumstances. It is rather common for data 

sources that contain information about individual outcomes to also contain various variables 

describing inherited circumstances such as sex, race and socioeconomic background. But the set of 

available information is inevitably a strict subset of background circumstances. Omission of the 

unobserved circumstances tends to bias estimates of IOp downwards (Ferreira and Gignoux, 2011; 

Roemer and Trannoy, 2016).  

On the other hand, a second source of bias arises from the classic overfitting problem, whereby 

saturating the model with a large number of independent variables and their multiple interactions 

leads to an upward bias in the estimates of goodness of fit. This is a problem for both parametric 

and non-parametric methods. In a non-parametric setting, the same problem manifests as 

exploding sampling variation around cell means as cell sizes decline below a certain level. This 

problem introduces an upward biased in the estimation of explained variance (Chakravarty and 

Eichhorn 1994; Brunori, Peragine, and Serlenga, 2019).  

Although this problem was recognized from the outset, most of the early literature failed to address 

the trade-off between the two kinds of bias in a systematic way.10 The early studies that proposed 

either parametric or non-parametric methods to estimate IOp relied on ad-hoc specifications, either 

of the regression model or of the type partition. Yet, changing the number of regressors in such a 

model can dramatically alter the final estimates of IOp  

To illustrate the point, we show here the values for 𝐼𝐼𝑂𝑂𝐸𝐸𝐸𝐸 that we obtain by specifying hundreds of 

regression models of increasing complexity. The illustration is based on the data that we will 

 
10 Ferreira and Gignoux (2011), for example, note that “As sampling variance is high for cells containing few 
observations, estimated between-type inequality may become inflated, thereby inducing an overestimation 
of inequality of opportunity.” (p.640).  However, their proposed solution is to exercise “considerable 
parsimony in the partitioning of the population…” (p.642). They selected categories arbitrarily and restricted 
the number of types to a maximum of 108, but there was no sense in which that particular number 
represented an optimal choice between the downward bias from omitting certain interactions between the 
variables and categories, and the upward bias from including too many.  
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subsequently use for estimating inherited inequality in South Africa. (See Section 5.) Figure 1, which 

plots IOp estimates (using the Gini coefficient as 𝐼𝐼(𝑥𝑥)) against the number of regressors included in 

a linear regression using our own data, illustrates this variation. It reports results from a standard 

ex-ante parametric approach, as models rise in complexity by adding regressors. In constructing this 

figure, we used all circumstance variables we use in the remainder of the paper. Furthermore, we 

restricted interactions to pairwise interactions, thereby dampening the potential growth in the IOp 

estimates. Moreover, given that all regressors are categorical and the inclusion of all interactions 

leads to a large number of sparsely populated categories, we consider “only” the 493 regressors 

that describe at least 10 observations in the sample (e.g. we exclude the interaction “Father 

education == 1 and Mother education==10” which concerns no observation in the sample). Still the 

number of possible interaction terms is huge (approximately 1.948 x 10296). Therefore, for each 

possible number of regressors we select the most appropriate specification by backward stepwise 

selection (Lumley, 2022). Even with these restrictions, ex-ante IOp Gini estimates from our dataset 

with models of increasing complexity range from 0.016 to 0.52 (from 2.5% to 86% of total 

inequality).  

Figure 1: Ex-ante parametric IOp by backward stepwise selection 

Source: Author’s calculation on NIDS 5 
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It should be clear from Figure 1 that, in the presence of these two biases working in opposite 

directions, obtaining a meaningful estimate of 𝐼𝐼(𝑦𝑦�) 𝐼𝐼(𝑦𝑦)⁄  depends crucially on selecting the ‘right’ 

model for the prediction function 𝑦𝑦 = 𝑓𝑓(𝒄𝒄, 𝜀𝜀). But what the ‘right’ model is depends on the nature 

and purpose of the exercise. If one is estimating a structural model, guidance from the theory being 

tested is indispensable, and econometric methods suitable for the estimation of structural 

parameters should be used. When the model is being used for prediction, however, as is the case 

here, it may very well be that machine-learning methods from data science perform better. See 

Mullainathan and Spiess (2017) for an excellent discussion of the role of machine learning in 

economics and its advantages in prediction problems. 

Indeed, some machine learning methods have recently been applied to the measurement of 

inequality of opportunity, in attempts to let the data determine the right prediction model. Li Donni, 

Rodriguez, and Dias (2015) for example, suggest the use of finite mixture model to define types. But 

these models are extremely costly in terms of parameters and tend to produce rather parsimonious 

partitions, leading to very conservative IOp estimates.11  

In a similar spirit, Brunori, Hufe, and Mahler (2023) use conditional inference trees and random 

forests (CITF), which were introduced by Hothorn, Hornik, and Zeileis (2006). CITF partition a 

regressor space with the aim of predicting a dependent variable via the estimation of subgroup 

means. This feature makes them ideally suited to choosing a type-partition in an ex-ante 

framework, because each binary split is chosen by identifying the most significant differences across 

means in the two resulting cells.  Since the ex-ante approach to IOp involves computing inequality 

among type means, such an algorithm is the conceptually right approach to selecting the partition 

and estimating Equation (7), albeit with a different functional form 𝑓𝑓 ∈ ℱ than those in (6) or (8).  

But precisely because conditional inference trees focus on differences between means, not full 

distribution functions, those who subscribe to the stricter criterion of equal CDFs for equality of 

 
11 These models have been extensively used in the health economics literature. The typical partition obtained 
is made of an unrealistically low number of types. Li Donni, Rodriguez, and Dias (2015) use a five-type partition 
to model IOp in health a sample of 17,000 individuals, representative of the cohort of individuals born in UK 
in the third week of March 1958. The partition used by Carrieri, Davillas, and Jones (2020) is even more 
parsimonious. Using a subsample of the Understanding Society: The UK Household Longitudinal Study made 
of 5,800 respondents they define a partition in three types.  Brunori, Trannoy, and Guidi (2021) suggested the 
use of cross-validation to obtain a more realistic number of nodes, which nevertheless remains constrained 
by the large number of parameters necessary to estimate latent classes.  
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opportunity – including those who follow Roemer (1998) in interpreting the quantiles of those CDF’s 

as relative measures of individual effort – will need an alternative data-driven approach. In what 

follows, we propose the use of one such approach, namely transformation trees. Transformation 

trees are supervised machine learning algorithms recently introduced by Hothorn and Zeileis 

(2021). In the next section we explain how the algorithm works and how it represents an exact 

empirical implementation of Roemer’s approach to inequality of opportunity. 

4  Estimating IOp using Transformation Trees  

As noted in Section 2, an ex-post approach to inequality of opportunity essentially consists of 

measuring inequality for each quantile, across the types’ conditional distributions functions, as in 

Eq (11) above, and then appropriately aggregating across quantiles. The key ingredient for the 

approach, therefore, is to estimate the income level at quantile q in type c, that is: the conditional 

quantile function 𝑦𝑦𝑞𝑞𝑞𝑞 = 𝐹𝐹−1(𝑞𝑞|𝐶𝐶 = 𝑐𝑐).  When data on the joint distribution {y, C} is not observed 

for the full population, estimating these conditional quantile – or their inverse, distribution – 

functions from a sample notionally involves two steps. 

First, an optimal type partition 𝐶𝐶 ∈ ℂ needs to be defined, trading off the downward bias that arises 

from combining sub-types into types against the upward bias from overfitting that arises from an 

excessively fine partition, (i.e., by subdividing types into sub-types. See Brunori, Peragine, and 

Serlenga, 2019). Second, given a partition 𝐶𝐶 ∈ ℂ, the conditional quantile functions must be 

estimated, either parametrically or non-parametrically.  Once that has been done, the resulting 

estimates {𝑦𝑦�𝑞𝑞𝑞𝑞} can be used to compute quantile-specific inequality levels (across types), which are 

then suitably aggregated across quantiles.  

Previous attempts to compute ex-post IOp (e.g., Checchi and Peragine, 2010) have typically suffered 

from two shortcomings.  First, the partition 𝐶𝐶 ∈ ℂ was chosen rather arbitrarily, and second 

quantiles were computed at a highly aggregated level, e.g., quartiles or deciles, so as to ensure that 

there were sufficient observations in each quantile (or “tranche”) for a meaningful computation of 

inequality across types to take place. Indeed, the fact that the ex-post approach to IOp requires 

information on the entire conditional distribution 𝐹𝐹�𝑦𝑦𝑞𝑞𝑞𝑞|𝐶𝐶 = 𝑐𝑐�, rather than merely the mean 𝜇𝜇𝑞𝑞 

of that distribution for each type, makes it more data-intensive and has been one of the reasons 

why the ex-ante approach has dominated empirical applications.   
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The combined requirements to choose an optimal type-partition given the available dataset and to 

estimate conditional distribution functions for each of those types in a data scarce environment 

make this problem well-suited to a new variety of tree-based estimator, recently developed by 

Hothorn and Zeileis (2021). This estimator, known as a transformation tree (TrT), was specifically 

designed to estimate conditional distributions for terminal nodes of trees.  

TrT relies on the assumption that there exist “good enough” parametric approximations to 

𝐹𝐹�𝑦𝑦𝑞𝑞𝑞𝑞|𝐶𝐶 = 𝑐𝑐�. In the limit, they assume that there exist parameters 𝜃𝜃 ∈ Θ such that:  

𝐹𝐹�𝑦𝑦𝑞𝑞𝑞𝑞|𝐶𝐶 = 𝑐𝑐� = 𝐹𝐹 �𝑦𝑦�𝑞𝑞𝑞𝑞 ,𝜃𝜃(𝑐𝑐)� ,𝜃𝜃:ℂ → Θ (13) 

𝜃𝜃(𝑐𝑐) is known as the conditional parameter function, which maps from the set of all possible type 

partitions on to the set of possible distributional parameters. Under this assumption, the problem 

of estimating the conditional distributions across types in the optimal partition, and hence {𝑦𝑦�𝑞𝑞𝑞𝑞}, 

reduces to the problem of selecting the optimal parameter estimates, 𝜃𝜃�, given the data {y, C}. TrT 

uses an adaptive local likelihood maximization approach for that purpose. Specifically, it selects 𝜃𝜃� 

as: 

𝜃𝜃�𝑁𝑁(𝑐𝑐) = arg max𝜃𝜃𝜃𝜃Θ�𝑤𝑤𝑖𝑖(𝑐𝑐)ℓ𝑖𝑖(𝜃𝜃)
𝑁𝑁

𝑖𝑖=1

 
(14) 

where 𝑖𝑖 ∈ {1, … ,𝑁𝑁} denotes each observation in the data set and ℓ𝑖𝑖(𝜃𝜃) denotes the log-likelihood 

contribution of i, when the parameters are given by 𝜃𝜃. The recursive binary splitting process that 

creates a transformation tree is implemented by choosing weights: 

𝑤𝑤𝑖𝑖(𝑐𝑐) = �𝐼𝐼(𝑐𝑐 ∈ ℬ𝑏𝑏 ∧ 𝑐𝑐𝑖𝑖 ∈ ℬ𝑏𝑏)
𝐵𝐵

𝑏𝑏=1

 
(15) 

The indicator function takes the value 1 when observation i is sufficiently “close” to c, so the weights 

in (14) simply count the number of observations in each bin ℬ𝑏𝑏. At the terminal nodes, ℬ𝑏𝑏 

corresponds to a type, so the maximization process in (14-15) allocates each observation to a type 

and sums the local likelihood functions across types. The type partition and the parameter vector 𝜃𝜃 

are chosen so as to maximize that sum of likelihoods. That is, given the available data {y, C} and the 

recursive splitting approach to weights, the likeliest set of types and income distributions 

conditional on type is that given by 𝐹𝐹 �𝑦𝑦�𝑞𝑞𝑞𝑞 ,𝜃𝜃�𝑁𝑁(𝑐𝑐)�. So, our prediction function under this method 

is given by: 
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𝑦𝑦�𝑇𝑇 = 𝑓𝑓𝑇𝑇(𝑐𝑐) =
𝜇𝜇
𝜇𝜇𝑞𝑞
𝑦𝑦�𝑞𝑞𝑞𝑞      where       𝑦𝑦�𝑞𝑞𝑞𝑞 = 𝐹𝐹−1 �𝑞𝑞,𝜃𝜃�𝑁𝑁(𝑐𝑐)� 

 

(16) 

 

The Transformation Tree estimate of ex-post inequality of opportunity is simply: 

𝐼𝐼𝑂𝑂𝐼𝐼𝑇𝑇 =
𝐼𝐼(𝑦𝑦�𝑇𝑇)
𝐼𝐼(𝑦𝑦)  

(17) 

 

Details of how the likelihood maximization is implemented (using Bernstein polynomials to fit the 

conditional distribution functions at each node) are given in Appendix 1. In practice, the process 

can be summarized by the following seven-step algorithm: 

1. set a confidence level (𝛼𝛼); 

2. set a polynomial order (𝑀𝑀); 

3. estimate the unconditional distribution with the Bernstein polynomial of order 𝑀𝑀; 

4. test the null hypothesis of polynomial parameters stability for all possible partitions based 

on each 𝑥𝑥 and store 𝑝𝑝 − 𝑣𝑣𝑉𝑉𝑣𝑣𝑣𝑣𝑒𝑒𝑣𝑣. 

5. if ∀𝑥𝑥 and each possible partition the Bonferroni-adjusted 𝑝𝑝 − 𝑣𝑣𝑉𝑉𝑣𝑣𝑣𝑣𝑒𝑒 > 𝛼𝛼, stop the 

algorithm; 

6. otherwise, choose the variable and the splitting value producing the smallest 𝑝𝑝 − 𝑣𝑣𝑉𝑉𝑣𝑣𝑣𝑣𝑒𝑒 to 

obtain two subgroups, 

7. repeat step 4:6 for the resulting subgroups. 

In our application below, we follow statistical convention and set 𝛼𝛼 to 0.01. Then, we set 𝑀𝑀, the 

order of the Bernstein Polynomial. The selection of 𝑀𝑀 is not as simple as that of 𝛼𝛼, because how 

well a certain order interpolates the distribution is intrinsically data-dependent. An order too small 

might result in a poor approximation of the distribution, while a too elevated order would translate 

into a loss of degrees of freedom and high computational costs.  

To find an appropriate order, we tune the algorithm by estimating the out-of-sample log-likelihood, 

after a 5-fold cross validation, for several order values of the Bernstein Polynomial (ranged between 

2 and 10). We select the lowest order in which the relative improvement of the log-likelihood that 

would be obtained by estimating an additional parameter is smaller than 0.1%. In our application, 

this procedure – summarized in Figure 2 below – yields a Bernstein polynomial of order 8.  

                            17 / 52



16 
 

In step 3, an unconditional CDF for our sample is estimated with a Bernstein polynomial of order 8. 

The key step is then step 4, where the M-fluctuation test is performed to detect instability of the 

parameters in the conditional distribution functions across potential types. To intuitively illustrate 

this key test, Appendix 2 provides a simple example of the procedure, using made-up data. Further 

details can be found in Hothorn and Zeileis (2021) and Kopf, Augustin, and Strobl (2013).  

 

Figure 2: Out of Sample Log-Likelihood by orders of Bernstein Polynomial 

 

Source: Authors’ elaboration from NIDS 5. 

After following steps 4-7 we obtain an estimated Transformation Tree for South Africa and, from 

that tree, a number of outputs that are described in Section 6. But before presenting those results, 

we briefly describe our dataset in Section 5.  

5. Data 

We apply this method to the latest wave of the National Income Dynamics Study (NIDS 5) survey, 

carried out by the Southern Africa Labour and Development Research Unit (SALDRU) for the year 

2017 (Brophy et al., 2018). NIDS is a longitudinal survey, with previous waves collected in 2008, 

2010/11, 2012, and 2014/5. It is an interesting dataset for studying the inheritance of inequality 

                            18 / 52



17 
 

because it is a reliable and extensive source of information about incomes and circumstances for 

arguably the world’s most unequal country.12 Moreover, IOp has already been analyzed in South 

Africa (see Piraino, 2015, and Brunori, Ferreira, and Peragine, 2021), so our results can be readily 

benchmarked against alternative methods. 

Before any filters, the NIDS 2017 contains 20,461 individuals. The reason we use only the 2017 wave 

of the survey is that, in that year, SALDRU oversamples rich households, allowing for more precise 

inequality estimates due to the inclusion of more detailed information from the top of the income 

distribution (Branson, 2019). This was done in earlier waves.  Our main results are obtained from 

this complete sample. However, SALDRU also provides appropriate weights to exclude wealthy 

households oversampled in 2017 and we report statistics on both samples in this section for 

comparability. We refer to the sample without oversampling of the rich as 2017b. 

As our outcome variable we use monthly age-adjusted equivalized disposable household income, 

in 2015 rands. It includes all regular incomes received by households, including imputed rental 

income from owner-occupied housing, net of taxes. To account for scale economies in 

consumption, the square-root equivalence scale is used (Buhmann et al., 1988; OECD, 2013). The 

age adjustment – applied to account, at least in part, for life-cycle dynamics – consists of regressing 

our income variable (as defined so far) on age and age squared, and using the sum of constant and 

residual as the adjusted variable (see, e.g., Palomino et al., 2022).  

The circumstances available in the NIDS 2017 dataset are: sex (male and female), ethnicity (African, 

Asian/Indian, coloured, and white), fathers’ and mothers’ education (13 levels, ranging from "Non-

educated" to "Grade 12 or more") and fathers’ and mothers’ occupation (11 categories, 10 

associated to the 1-Digit ISCO and one extra including other categories, such as out of the labour 

force, deceased or other unclassified occupations)13. Item non-response is a serious issue in these 

data, particularly for information on respondent’s parents. We are able to alleviate the problem 

 
12 See Mahler and Baur (2023) for recent estimates. 

13 Note that the question refers to current occupation of the parents or the last occupation. We exploit the 
panel structure of NIDS and look at information about circumstances reported by the same individuals in 
previous waves and a) For those with missing circumstances, we will with the oldest value available, and b) 
we use the first value of the parental occupation reported in the data. 
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somewhat by matching individuals across waves of the NIDS, which is a longitudinal dataset with 

previous waves collected in 2008, 2010/11, 2012, and 2014/5. Table 1 reports the shares of 

observations with missing information by circumstance variable, before and after this cross-wave 

matching. Although substantial progress is made in the parental occupation variables, this is less 

the case with mother’s education.  

Table 1. Missing circumstances before and after cross-wave matching 

Matching Ethnicity F.Occ M.Occ F.Edu M.Edu Sex 

Before 5.07 37.67 35.95 44.21 44.72 5.03 

After 0.01 5.03 5.04 30.83 43.42 0.00 

Source: Own elaboration from NIDS 5. F.Occ stands for Father Occupation, M.Occ stands for 
Mother Occupation, F.Edu stands for Father Education, M.Edu stands for Mother Education 

 

We then apply two filters to the sample: we restrict the analysis sample to adults aged between 18 

and 80; and omit all observations with any missing information in either income or circumstances. 

This leaves us with 7,297 observations for the analysis. There is clearly a risk of sample selection if 

observations are not missing at random. We cannot completely address that problem, which 

plagues most studies of intergenerational mobility or inequality of opportunity in developing 

countries. However, we do at least use cross sectional weights calibrated to province, sex, race, and 

age group totals. As proposed in (Brunori, Salas-Rojo, and Verme 2022), we correct these weights 

for item non-response by applying the reweighting method proposed in (Korinek, Mistiaen, and 

Ravallion 2006) and implemented by Munoz and Morelli (2021). The reader is referred to those 

papers for details.  

Table 2 shows some basic descriptive income statistics for both the 2017 and 2017b analysis 

samples, including Gini coefficients which, in both cases, are just over 0.6 – despite the equivalence 

scale and age adjustments.14  

 

 
14 These two adjustments are likely to reduce inequality, relative to per capita income unadjusted for age. 
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Table 2: Descriptive Income Statistics 

Sample N Mean Sd Gini MLD 

2017 7297 6474.20 11173.20 0.605 0.678 

2017b  6730 6418.23 11470.35 0.599 0.664 

Source: Own elaboration from NIDS 5. N stands for the analysis sample size. Sd stands for 
Standard Deviation, MLD stands for Mean Logarithmic Deviation. Incomes in rands (2015). 

 

Table 3 contains summary descriptive statistics for the circumstance variables, as proportions of 

the weighted analysis sample.  

Table 3: Descriptive Circumstance Statistics  

Ethnicity Figure labels 2017 2017b 

African 1 78.27 83.58 
Asian/Indian 2 1.9 1.1 

Coloured 3 11.55 12.12 
White 4 8.28 3.19 

Sex Figure labels 2017 2017b 

Female 1 37.14 36.12 
Male 0 62.86 63.88 

Education Figure labels Mother (2017) Mother (2017b) Father (2017) Father (2017b) 
Non-

Educated 0 54.73 58.59 57.38 61.71 

Grade 1 1 0.59 0.64 0.67 0.73 
Grade 2 2 1.47 1.56 1.52 1.63 
Grade 2 3 2.38 2.54 2.32 2.39 
Grade 4 4 3.38 3.54 2.54 2.66 
Grade 5 5 2.71 2.82 2.37 2.44 
Grade 6 6 3.03 3.12 2.63 2.64 
Grade 7 7 4.32 4.37 3.29 3.19 
Grade 8 8 7.83 7.37 7.35 6.91 
Grade 9 9 1.9 1.87 1.82 1.72 

Grade 10 10 4.77 3.92 4.4 3.49 
Grade 11 11 2.03 2.05 1.6 1.53 
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Grade 12 
and more 12 10.85 7.61 12.11 8.95 

Occupation Figure labels Mother (2017) Mother (2017b) Father (2017) Father (2017b) 

Army 0 0.01 0.01 0.58 0.55 
Managers 1 0.58 0.42 2.64 1.78 

Professionals 2 5.8 4.1 4.15 3.05 
Technicians 3 1.4 0.91 2.1 1.6 

Clerks 4 1.69 0.85 0.9 0.7 
Service 5 3.1 2.75 6.43 6.37 
Skilled 6 0.22 0.24 0.88 0.85 
Craft 7 1.34 1.26 10.65 9.81 

Operators 8 0.26 0.21 12.16 12.38 
Elementary 9 24.06 25.13 20.58 21.25 

Other/not in 
the labour 

force 
10 61.55 64.13 38.93 41.66 

 Source: Own elaboration from NIDS 5. All values are shares (%) of the analysis sample,  

 

6.  Results: Inequality of Opportunity in South Africa. 

Applying the algorithm outlined in Section 4 to estimate Equation (16), yields the transformation 

tree shown in Figure 3. The splitting process generated by the algorithm should be read from left 

to right. The first split divides the population between the White population (ethnicity = 4; above) 

and all others (ethnicity = 1, 2, 3). As we move to the right, other circumstances subsequently 

partition the population following the algorithm, until the final nodes – types – are reached. There 

are fourteen types in this optimal partition, and the Figure shows the parametrically estimated 

density function for each of them, as well as indicating the population share accounted for by each 

type, and its mean income as a multiple or share of the overall mean.15   

In terms of the model selection challenge illustrated in Figure 1, the algorithm partitioned the 

population into these fourteen groups (and fit CDF’s to them) so as to maximize the likelihood of 

fitting the data, under the restrictions 𝑓𝑓 ∈ ℱ, with ℱ being the class of recursive binary TrT 

 
15 For clarity, given the high right-skewness of South African income distribution, and although we use 
income in levels to compute all our measures, we plot the density of log income. 
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estimators. The partition corresponds to the products (or interactions) of various dummy variables 

defined over the circumstances. Type 27, for example, which is the richest type at the top of the 

Figure, corresponds to the product of dummy variables 𝑥𝑥1 = 𝟏𝟏𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟=𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑟𝑟 ×

𝟏𝟏𝑓𝑓𝑟𝑟𝑖𝑖ℎ𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑞𝑞𝑟𝑟𝑖𝑖𝑖𝑖𝑒𝑒𝑛𝑛=11 𝑒𝑒𝑟𝑟 12.  Type 8, which is the poorest type and second from the bottom of the 

Figure, corresponds to 𝑥𝑥13 = 𝟏𝟏𝑟𝑟𝑟𝑟𝑞𝑞𝑟𝑟=𝑏𝑏𝑏𝑏𝑟𝑟𝑞𝑞𝑏𝑏 × 𝟏𝟏𝑓𝑓𝑟𝑟𝑖𝑖ℎ𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑞𝑞𝑟𝑟𝑖𝑖𝑖𝑖𝑒𝑒𝑛𝑛∈{0−7} × 𝟏𝟏𝑚𝑚𝑒𝑒𝑖𝑖ℎ𝑟𝑟𝑟𝑟 𝑒𝑒𝑞𝑞𝑞𝑞𝑒𝑒𝑝𝑝.  ∈{0,6,10} ×

𝟏𝟏𝑠𝑠𝑟𝑟𝑠𝑠=𝑓𝑓𝑟𝑟𝑚𝑚𝑟𝑟𝑏𝑏𝑟𝑟 × 𝟏𝟏𝑚𝑚𝑒𝑒𝑖𝑖ℎ𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑞𝑞𝑟𝑟𝑖𝑖𝑖𝑖𝑒𝑒𝑛𝑛 ∈{0−4,6,7,9,11}.  And so on.  

 

Figure 3: Transformation Tree for South Africa, NIDS 2017. 

 

Source: Authors’ elaboration from NIDS 5. 

The ability to identify these specific patterns in data does have some cost in terms of model 

variance. This type of tree is not immune to the problem of sensitivity to the estimated model, 

which is common to regression and classification trees, and therefore, we caution against 
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overinterpreting the obtained partition and complementing the analysis with resampling-based 

tools that we introduce in the following pages. Moreover, when interpreting trees, it is important 

to keep in mind that in some cases a split can be misleading. When the algorithm uses a certain 

circumstance to divide the sample, it must place all individuals from the node that originates the 

split either in one subgroup or the other. If there are very few respondents who have a specific 

value for the characteristic in question, the assignment to the group can be almost random. To 

address this issue, it is possible to complement the analysis of the tree structure with tabulations 

that show the share of observations in each type and category by circumstance like the ones 

presented in Appendix 4. Take, for example, the composition of type 8, the first row of table A.6 

regarding mother's occupation. Type 8 includes both respondents with non-working mothers and 

mothers in skilled manual occupations. However, the relative composition is extremely different, 

with the first group consisting of over two thousand respondents, while only six respondents report 

a mother in a skilled manual job.  

Figure 4 shows the estimated cumulative distribution functions (ECDF) for all fourteen types. The 

different colors denote types characterized by a certain ethnic group or mix of groups. The 

polarization of South African society by race is clearly visible, with the two richest types, 26 and 27, 

(a) being exclusively white and (b) comprising all of white people in the sample. There are no white 

people in the other twelve types in our sample. Together, they represent 8.3% of the sample. At 

the same time, although the whites are isolated at one end of the distribution of opportunities in 

this country, they are not homogeneous. The tree has split those with the most highly educated 

fathers (completed secondary or tertiary) from the rest. The difference between their average 

incomes is 135% of overall the sample mean. At the other extreme, the poorest type consists 

exclusively of black females with generally less educated parents and mothers in certain low-skilled 

occupations16. This is a large group, accounting for over 28% of the population and earning less than 

40% of the overall mean. In between, the socially intermediate position of South Africans of Indian 

and Asian origin (alongside some of the so-called ‘coloured’) is evident in Types 10 and 24, pictured 

in yellow.  

 

16 To allow for maximum flexibility in the estimation, both parental occupation and parental education are 
treated as categorical, rather than ordinal, variables. Nevertheless, with few exceptions, the sample is split 
consistently with the order of the variables.  
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Figure 4: Conditional Income Distributions by Type. 

  

Source: Authors’ elaboration from NIDS 5. 

 

The same information can be represented in yet another potentially useful way, by showing the 

country’s overall population density function (of log incomes) as a mixture of the distributions of 

the fourteen types, as shown in Figure 5 below. Vertical slices of this kernel density estimate would 

then yield the racial composition of each income range corresponding to the logarithmic scale on 

the horizontal axis. 
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Figure 5: Density function as a mixture of type distributions  

 

Source: Authors’ elaboration from NIDS 5. 

The dashed line accompanying each ECDF in Figure 4 is the outcome predicted by the Bernstein 

polynomial: 𝐹𝐹 �𝑦𝑦�𝑞𝑞𝑞𝑞 ,𝜃𝜃�𝑁𝑁(𝑐𝑐)� for each type. The estimated incomes at each quantile, 𝑦𝑦�𝑞𝑞𝑞𝑞, are used to 

compute IOp through Equations (16-17). We use two different inequality measures 𝐼𝐼(𝑥𝑥) for that 

computation, namely the Gini coefficient and the mean log deviation (MLD). The mean log deviation 

was used extensively in the early IOp literature, given its ideal decomposability properties (see 

Foster and Shneyerov, 2000 and Ferreira and Gignoux, 2011). As it became increasingly clear that 

standard decomposability was not, in fact, required for the measurement of IOp – unless one wishes 

to interpret within-group inequality as being entirely driven by effort – the Gini has been used more 

frequently. It has the advantage, as noted by Brunori, Palmisano, and Peragine (2019), that it is 

more sensitive to the central parts of the distribution, where group means tend to cluster, rather 

than to the lower tail. In that sense, the Gini is better suited to studying IOp and, although we report 

both measures in Table 4 below, we focus the discussion on the Gini estimates. The upper part 

contains results for the main sample for 2017 (which oversamples the rich) and the bottom part 

reports results for the alternative sample (2017b), as discussed in Section 3. 
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Table 4: Inequality of Opportunity Results 
 

Sample 
2017 Gini Abs. Gini 

IOp 
Rel. Gini 

IOp MLD Abs. MLD. 
IOp 

Rel. MLD. 
IOp Types 

TRT 0.605 0.445 73.58 0.678 0.330 48.75 14 

CIT 0.605 0.408 67.44 0.678 0.274 40.41 12 

CIRF 0.605 0.430 71.07 0.678 0.299 44.10  

        

Sample 
2017b Gini Abs. Gini 

IOp 
Rel. Gini 

IOp MLD Abs. MLD. 
IOp 

Rel. MLD. 
4.IOp Types 

TRT 0.599 0.418 69.77 0.664 0.288 43.44 14 

CIT 0.599 0.401 66.96 0.664 0.264 39.82 9 

CIRF 0.599 0.379 63.24 0.664 0.229 34.42  

 
Source: Own elaboration from NIDS 5. TrT stands for Transformation Tree, CIT for Conditional 

Inference Tree, CIRF for Conditional Inference Random Forest, Abs. for Absolute, Rel for Relative. 

  

The headline results are in the first row of the table. The Gini coefficient calculated on the vector  

𝒚𝒚�𝑻𝑻 (see Eq.16) obtained from the ECDFs of the fourteen types in our ex-post partition is 0.44, or 

73% of the overall Gini coefficient of 0.61 for South Africa. This is a remarkable number: the 

“opportunity Gini” for South Africa is higher than the overall income Gini coefficient of the United 

States (0.41 as reported by the World Bank for the same year).17 Not only that, but inherited 

inequalities account for almost three-quarters of the (extremely high) inequality in current incomes 

in the country. While this is perhaps not entirely surprising, given the history of Apartheid, it is 

certainly the case that previous methods had not found similarly high opportunity ratios. Piraino 

(2015), for example, employs the ex-ante approach and two possible econometric methods to 

estimate inequality of opportunity on gross employment earnings (using up to 54 Roemerian types). 

Depending on the set of circumstances considered he finds a level of IOp ranging between 17% and 

24% of total inequality measured with mean logarithmic deviation (MLD) – which compares to our 

MLD estimate of 48%. This difference is in part due to the oversampling of richer households, but 

it persists when using comparable samples where the relative IOp in MLD is 36%.  

 

17 See https://data.worldbank.org/indicator/SI.POV.GINI?locations=US 
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The second and third rows in each part of Table 4 contain benchmark estimates from applying ex-

ante approaches to our data. Figure 6 shows the ex-ante tree obtained with same data, replicating 

(exactly) the approach of Brunori, Hufe, and Mahler (2023) to construct conditional inference trees 

and random forests. As noted in Section 3, these two (closely related) machine-learning estimators 

have recently been applied to the computation of IOp (in Europe) and we include their estimates 

here for comparison and benchmarking only.18 Note that although the structure of the ex-ante tree 

is similar, with a preponderant role of race in the definition of the tree structure, some differences 

emerge (e.g., white respondents are no longer split in two types).  

 

Figure 6: Conditional Inference Tree for South Africa, 2017 

Source: Own elaboration from NIDS 5. 

 

In terms of the IOp summary statistics in Table 4, the ex-ante (CITF) tree estimates are a little lower 

than for the ex-post (TrT): an opportunity Gini of 0.41 in the ex-ante case, versus 0.44 in the ex-post 

case. It is tempting to conclude that this might be because, by looking only at type means, the ex-

ante approach misses additional differences along the ECDFs. But one should be cautious with this 

 
18 They are not our focus in this paper and readers are referred to Brunori, Hufe, and Mahler (2023) for 
definitions and methodological descriptions.   
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interpretation. The random forest ex-ante estimate in the third row (0.43), which is known to be 

more robust than that of a single tree, is very close to the ex-post tree result. We interpret the 

broad similarity in the estimates across the three different methods – particularly the the TrT and 

the random forest – for both the Gini coefficient and the MLD – as an indication of the robustness 

of the data-driven approach to the assessment of inherited inequality.  

We also interpret the fact that these methods tend to find higher shares of inherited inequality in 

overall dispersion than earlier approaches as a reflection of the ability of the algorithms to identify 

the most salient inequalities across subgroups. With fourteen “variables” or sets of interactions 

between dummy variables, our transformation tree finds an inequality in predicted incomes roughly 

similar to that of 200 regressors in the backward stepwise selection procedure depicted in Figure 1. 

Furthermore, adding another 300 regressors in that exercise yielded another six Gini points, likely 

by overfitting the data. This reflects the ability of the trees and forests to identify the “right” 

subgroups to focus on, by the very design of the algorithms. 

Yet, although the ex-ante and ex-post methods presented here yield similar headline measures of 

IOp, they do identify different partitions – as one would expect from the fact that CITFs (and forests) 

are designed to find the most statistically significant differences between averages, and the TrT are 

looking for more general differences across CDFs, including in higher moments. Since both 

partitions (into 14 ex-post types and 12 ex-ante types) are of the same sample, we can map which 

ex-ante and ex-post type each individual in the sample belongs to. The mapping is shown in the 

Sankey plot in Appendix 3. Although space limitations preclude a detailed analysis of the plot, we 

note that movements between ex-ante and ex-post types are commonest when the ECDFs in Figure 

4 are not far apart and cross one another. Examples include ex-post types 7 and 13, as well as 10 

and 16. Indeed it can be seen that most members of ex-post type 13 are merged with either type 8 

or 10 in the ex-ante case. These different allocations are the result of allowing differences in higher 

moments of the type distributions to affect splitting decisions in the tree. 

 While it may not always be possible to provide an intuitive explanation for the differences between 

the two partitions, there are cases in which it is possible to understand which characteristics 

distinguish respondents who are in two different types in the two partitions. Ex-ante type 17, for 

example, consists of non-white respondents whose mothers were employed in elementary 

occupations. Within this group, there are several subtypes in the ex post partition, but the majority 

of observations, over 80%, are concentrated in two ex-post types: 50% of the observations belong 
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to ex-post type 15, constituting 95% of this type, while 31% are categorized as ex-post type 16, 

making up 97% of this type. The distinguishing circumstance between the two groups is the 

occupation of their fathers. Individuals in ex-post type 15 tend to have fathers in craft occupations 

or unspecified occupational statuses which include also fathers outside the labor force, while the 

majority of individuals in type 16 have fathers whose occupation falls under the category of 

operators and elementary workers. The latter group, represented by respondents in ex-post type 

16, have higher average income, although the difference is not significant enough to allow a split in 

the ex-ante tree. But also display a different cumulative distribution function with a substantially 

higher income variance. 

Ex-ante and ax-post trees are therefore complementary tools to understand inequality of 

opportunity. It should be noted, however, that both CIT and TrT – as well as trees in general – are 

well known for their ability to detect complex interaction effects (low bias), but also to be highly 

sensitive to the exact sample observed (high variance). For this reason, the structure of a single tree 

should never be interpreted beyond its statistical meaning: the most likely partition in types in the 

observed sample, among the many probable partitions that could be obtained from other samples 

equally representative of the population of interest.  

In the remainder of this section, we briefly present two additional sets of results that can also 

improve the robustness of our understanding of the phenomenon and can be easily obtained from 

this approach to inherited inequality: (i) a descriptive decomposition of the role of each individual 

circumstance variable, and (ii) an estimate of the objective function for a Rawlsian opportunity-

egalitarian. 

The role of individual circumstances  

The prediction function in equation (16) is highly non-linear in circumstances, so that any 

assessment of the relative contribution of individual circumstances to inequality in predicted 

incomes, 𝐼𝐼(𝑦𝑦�𝑇𝑇) cannot rely on marginal effects. As in other similar cases in inequality analysis, the 

decomposition method most suitable to our application is the Shapley-Shorrocks decomposition 

(Shapley, 1953; Shorrocks, 2013). This decomposition computes the total contribution of a 

particular circumstance variable 𝑐𝑐𝑏𝑏 to predicted inequality as the reduction in the latter when 𝑐𝑐𝑏𝑏 is 

omitted from the prediction, averaged across all possible combinations of circumstances that omit 
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𝑐𝑐𝑏𝑏. (See Shorrocks, 2013). A description of the algorithm used to compute the decomposition also 

helps clarify its logic:  

A) Draw a subsample of the full sample;19 

B) Estimate IOp in this subsample, as described in Section 4, but setting 𝛼𝛼 = 1; 

C) Further, estimate IOp in the subsample for all possible permutation sequences that 

eliminate circumstance 𝑐𝑐𝑏𝑏. This elimination is performed by replacing 𝑐𝑐𝑏𝑏 with a constant 

vector 1; 

D) Estimate a tree and IOp after each elimination sequence and store its difference with 

respect to IOp; 

E) Average IOp across all permutation sequences. The difference between overall IOp and this 

average is the specific contribution of 𝑐𝑐𝑏𝑏; 

F) Repeat steps A-E z times, to account for different potential data-generating processes. In 

our case, we set z = 100; 

G) Estimate the contribution of 𝑐𝑐𝑏𝑏 to IOp as the average contribution across these z 

repetitions; 

H) Repeat the algorithm for each 𝑐𝑐𝑏𝑏, 𝑘𝑘 ∈ {1, … ,𝐾𝐾}. 

Analogously to the common approach used in estimating random forests, we construct trees on a 

subsample of the initial population, permitting each tree to attain significant depth. These two 

adjustments enable all circumstances with predictive power to contribute to defining the partition 

of types, at least in certain iterations, making the assessment of the relative contribution of each 

circumstance robust to the typical problem of variance of estimates based on a single tree.  

Table 5 presents the results of the Shapley-Shorrocks decomposition across the six circumstance 

variables available in our data set. Results are presented as percentage shares of the ex-post 

opportunity Gini coefficients reported in Table 5, for both the main 2017 sample and the secondary 

sample 2017b. 

 

 
19 Following the convention often used in tree bagging procedures, we draw subsamples 63.2% of the original 
sample size (see Hothorn, Hornik, and Zeileis, 2006).  

                            31 / 52



30 
 

Table 5: Ex-post tree Shapley value Decomposition (as % of Gini IOp) 

Year Ethnicity F.Occ M.Occ F.Edu M.Edu Sex 

2017 30.59 14.16 16.07 17.63 17.23 4.33 

2017p 44.64 10.18 12.29 14.57 13.01 5.3 

Source: Own elaboration from NIDS 5. F.Occ stands for Father Occupation, M.Occ stands for Mother 
Occupation, F.Edu stands for Father Education, M.Edu stands for Mother Education. 

 

The importance of the race or ethnicity variable, which was already evident from the tree in Figure 

3, is confirmed here: it contributes 31% of IOp in the sample that oversamples the rich, and as much 

as 45% of the other sample. The difference reflects the fact that much of the “added” inequality 

among the rich is inequality among whites. Fathers’ and mothers’ educational levels come next in 

importance, with about 17% each, followed closely by their occupational categories, where the 

mother’s occupation appears to contribute just a little more than the father’s.  Naturally, it should 

go without saying that, in keeping with the measurement-using-prediction spirit of our analysis, 

these decompositions are purely descriptive.  

The lower envelope of quantile functions 

Although the analysis of inherited inequality, in any of the forms described in Section 2, is inherently 

descriptive, it often raises normative questions about what the policy objectives should be with 

regard to intergenerational persistence, or inequality of opportunity. As with inequality in general, 

one must contend, in particular, with the leveling-down objection: if the objective were simply to 

eliminate inequality in predicted incomes, 𝐼𝐼(𝑦𝑦�), and thus immobility or inequality of opportunity, 

this might be achieved by setting all incomes to zero – or some other very low value. Policies might 

be arranged in such a way that there was no inherited inequality, but everyone lived in poverty.  

The standard normative response to this philosophical objection is Rawls’s argument that 

inequalities should be tolerated only insofar as they are to the benefit of the worst-off (Rawls, 

1971). This gives rise to Rawlsian maximin objective functions, familiar to economists. And indeed, 

various versions of maximin objectives have been proposed in the context of inequality of 
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opportunity.20  One version is to arrange society and choose policies so as to maximize the (average 

of the) lowest incomes at each quantile of the conditional distribution functions, across all types. 

Recalling from the general framework in Section 2, that there are M types, 𝜏𝜏𝑚𝑚: = {∀𝑖𝑖|𝒄𝒄𝒊𝒊 = 𝒄𝒄𝒎𝒎}, 

whose conditional cumulative distribution functions are of the form 𝐹𝐹(𝑦𝑦|𝒄𝒄𝒎𝒎), define the lower 

envelope of the joint distribution {y, c} as: 

𝐿𝐿(𝑞𝑞) = min
𝜏𝜏𝑚𝑚

𝐹𝐹−1(𝑞𝑞, 𝒄𝒄𝒎𝒎) (18) 

 

And choose policies so as to: 

𝑀𝑀𝑉𝑉𝑥𝑥 � 𝐿𝐿(𝑞𝑞)𝑦𝑦𝑞𝑞
1

0
 

(19) 

 

As Roemer and Trannoy (2016) put it: “We do not simply want to render the functions identical at a 

low level, so we need to adopt some conception of ‘maxi-minning’ these functions. [...] A natural 

approach is therefore to maximize the area under the lower envelope of the [quantile] functions.” 

(p. 231).  

Equation (18) defines the lower envelope of the set of quantile functions (inverse functions of the 

distribution function). Graphically, if one inverts the conditional CDFs in Figure 4, one obtains the 

type quantile functions, as in Figure 7 below. 𝐿𝐿(𝑞𝑞) defines the lowest points in the graph at each 

quantile. If the poorest type were first-order stochastically dominated by all other types, then this 

would simply be its quantile function, and Equation (19) would mandate maximizing its average 

income, equal to the area under the quantile function.  When quantile functions cross at the bottom 

of the graph, Equation (19) mandates maximizing the average income of the lower envelope of the 

quantile functions. If there were no inequality of opportunity, all of society would be one type and 

∫ 𝐿𝐿(𝑞𝑞)𝑦𝑦𝑞𝑞1
0  would be its average income. Therefore, the value of the maximand in (19) is informative 

per se, as a measure of shared income in a society, and is interestingly read in relative terms, as a 

measure of how close the shared income is to the average income,  
∫ 𝐿𝐿(𝑞𝑞)𝑒𝑒𝑞𝑞1
0

∫ 𝐹𝐹(𝑞𝑞)𝑒𝑒𝑞𝑞1
0

. 

 

 
20 See, e.g., Van de Gaer (1993) and Bourguignon, Ferreira, and Menendez (2007).  
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Figure 7: Type quantile functions and the lower envelope 

 

Source: Authors’ elaboration from NIDS 5 

In practice, a literal computation of ∫ 𝐿𝐿(𝑞𝑞)𝑦𝑦𝑞𝑞1
0  might be over-sensitive to small (and possibly 

unstable) types detected in a particular sample. We therefore propose a robust version of the lower 

envelope which consists, in each quantile, of the average of the worst-off types adding up to at least 

10% of the population. In the present application, however, the robust version is almost identical 

to the strict definition in (18), because South Africa’s worst-off type (Type 8 in Figure 3) is dominated 

to a large extent by all other types and is also very large in terms of population.  The area below 
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South Africa’s lower envelope in 2017 is 2,203 Rand, or 34% of the overall mean of 6,474.20 rand, 

as shown in Table 2.21  

7. Conclusions 

The  extent to which inequality is inherited from previous generations and shaped by pre-

determined circumstances is a matter of both positive and normative interest. Many, if not most, 

approaches to quantifying this phenomenon, rely  on  prediction exercises, essentially  assessing 

how well incomes can be predicted by pre-determined circumstances such as biological sex, race, 

parental income,  or other indicators of family background.  We have shown  that  an array of 

commonly used measures of intergenerational mobility and inequality of opportunity can be 

written down  as functions of the ratio of inequality in these predicted incomes  to inequality in 

current-generation incomes.  What varies between them is the number and nature of the variables 

used for prediction, and  of the prediction function itself. But they can all be expressed as a two-

step procedure, in which incomes are first predicted by parental incomes or other inherited 

characteristics, and then inequality in those predictions is compared to observed inequality. 

Such prediction problems inherently involve a statistical trade-off between a downward bias arising 

from omitting certain variables and interaction terms, and an upward bias from including too many 

such variables and overfitting the model. Data-driven, machine learning techniques, which are 

designed to perform well out of sample and avoid overfitting by regularization were developed to 

solve this class of prediction problems. In particular, we have proposed the use of transformation 

trees (Hothorn and Zeileis, 2021) to estimate ex-post inequality of opportunity, which involves 

computing horizontal distances across the conditional distribution functions of suitably defined 

population subgroups (types) and aggregating them across quantiles.  

Transformation trees are particularly well-suited to the ex-post IOp approach because they predict 

incomes by simultaneously partitioning the sample and fitting flexible parametric esimates of these 

conditional distribution functions, so as to solve a well-defined local adaptive maximum likelihood 

 

21 The strict (non-robust) lower envelope is 2,168 rand in the 2017 sample. This declines to 1,941 
rand in the 2017b sample (2,125 rand in the robust version). 
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problem. They should be of interest to those whose normative view of equal opportunities follow 

Roemer (1993, 1998), in which conditional quantiles are associated with relative degrees of 

responsibility or effort. But we argue that the method is of more general appeal: if one thinks of 

equal opportunity – or the absence of inherited inequality – as a situation in which predetermined 

and parental characteristics are orthogonal to – have no predictive power over – present-

generation outcomes, then Equation (1) is the critical condition for it to hold.  Equality of group 

means, which is tested by other algorithms such as linear regressions,  tranditional non-parametric 

inequality decompositions, or conditional inference trees, is necessary but not sufficient. 

Transformation trees compute detect and quantify differences along the full conditional 

distribution functions.  

We applied this method to South Africa, arguably the world’s most unequal country, and found an 

opportunity Gini coefficient – our preferred measure of inequality in predicted incomes – of 0.44, 

corresponding to almost three-quarters of overall South African income inequality. When using an 

alternative measure like the mean log deviation, our estimate of inequality of opportunity the 

predicted share of inequality was at least twice as high in our estimate than in the previous 

literature.  

Another advantage of this approach is that it generates a number of byproducts which are 

descriptively informative of the structure of inequality in South Africa. These include the 

transfomation tree itself, graphical depictions of the conditonal distributions, a Shapley 

decomposition of the relative contributions of individual circumstance, and an estimate of lower 

envelope of the set of quantile functions, an average of which is a meaningful measure of 

opportunity deprivation and an estimate of the policy maximand proposed by Roemer (1998).   

That said, all estimation methods have advantages and disadvantages, and data-driven learning 

algorithms are no exception. Among the limitations of regression trees is the relatively high variance 

in the identified structure. As a result, researchers should not report only trees and forests, but also 

incorporate relative importance decomposition through bagging, and potentially integrating other 

standard econometric models, as supplementary tools. Employing these approaches collectively is 

most likely to lead to a thorough and robust understanding of inherited inequalities. 
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Appendix 1: The likelihood maximization using Bernstein polynomials 

In practice, implementation of the likelihood maximization is facilitated by using a monotonic 

transformation function of y, 𝑧𝑧 = ℎ(𝑦𝑦), with ℎ′(𝑦𝑦) > 0,∀𝑦𝑦.  Monotonicity ensures that 𝐹𝐹(𝑦𝑦) =

𝐹𝐹𝑧𝑧�ℎ(𝑦𝑦)�. We follow Hothorn and Zeileis (2021) in using Bernstein polynomials of order M to 

construct the transformation function: ℎ(𝑦𝑦) = 𝑉𝑉(𝑦𝑦)𝑇𝑇𝜃𝜃. Note that a(y) is a polynomial of order M in 

y. The choice of M implies the choice of the dimension of the parameter vector, P=M+1. The higher 

that order, the greater the flexibility with which 𝐹𝐹 �𝑦𝑦𝑞𝑞𝑞𝑞 ,𝜃𝜃(𝑐𝑐)� can be modelled, and the greater the 

degree to which differences in their higher moments affect the partition and the estimation. 

Bernstein polynomials are a particular application of this transformation function, in which: 

𝑉𝑉𝑀𝑀(𝑦𝑦) =
�𝜙𝜙1,𝑀𝑀+1(𝑦𝑦), … ,𝜙𝜙𝑀𝑀+1,1(𝑦𝑦)�

𝑀𝑀 + 1
                                           (A. 1) 

where 𝜙𝜙𝑚𝑚,𝑀𝑀 denote the density of the Beta distribution with parameters m and M. Using this 

particular vector for the polynomial in ℎ(𝑦𝑦) implies a simple log likelihood function that can be used 

for the maximization implicit in (5): 

ℓ𝑖𝑖(𝜃𝜃) = log[𝑓𝑓𝑧𝑧(𝑉𝑉(𝑦𝑦)𝑇𝑇𝜃𝜃)] + log(𝑉𝑉(𝑦𝑦)𝑇𝑇𝜃𝜃)                                    (A. 2) 

With this specific functional form for ℓ𝑖𝑖(𝜃𝜃), all that is needed to solve (5) and thus have the 

parameter estimates to model the conditional income distributions for all types in the tree terminal 

nodes is the algorithm to split the sample into types.  This proceeds sequentially.  Start from the 

case when 𝑤𝑤𝑖𝑖(𝑐𝑐) = 1,∀𝑖𝑖. This corresponds to no splits: all observations are in a single bin, and have 

the same weight in the log likelihood maximization. The parameter estimates obtained under that 

assumption are the simple maximum likelihood estimates: 

𝜃𝜃�𝑀𝑀𝐿𝐿𝑁𝑁 (𝑐𝑐) = arg max𝜃𝜃𝜃𝜃Θ�ℓ𝑖𝑖(𝜃𝜃)                                                  (A. 3)
𝑁𝑁

𝑖𝑖=1

 

To decide whether or not a split can improve prediction, test the null hypothesis: 

𝐻𝐻0: 𝑣𝑣�𝜃𝜃�𝑀𝑀𝐿𝐿𝑁𝑁 |𝑦𝑦� ⊥ 𝐶𝐶                                                           (A. 4)               

                            41 / 52



40 
 

where 𝑣𝑣�𝜃𝜃�|𝑦𝑦� denotes the gradient contribution of observation i. For continuous distributions, the 

score contribution is simply the derivative of the log density with respect to 𝜃𝜃. Differentiating (A.2) 

we obtain: 

𝑣𝑣�𝜃𝜃�|𝑦𝑦� = a(𝑦𝑦)
𝑓𝑓′𝑧𝑧(𝑉𝑉(𝑦𝑦)𝑇𝑇𝜃𝜃)
𝑓𝑓𝑧𝑧(𝑉𝑉(𝑦𝑦)𝑇𝑇𝜃𝜃) +

𝑉𝑉′(𝑦𝑦)
𝑉𝑉′(𝑦𝑦)𝑇𝑇𝜃𝜃

                                    (A. 5)  

There are a number of methods to test (A.4), and we follow Hothorn and Zeileis (2021) in using M-

fluctuation tests. When these tests reject 𝐻𝐻0, the algorithm implements a binary split in the 

circumstance x (an element of the vector c) that has the most significant association with the P x P 

score matrix, measured by the marginal multiplicity adjusted p-value (see Hothorn, Hornik, and 

Zeileis. 2006).  

The algorithm is then repeated by testing hypotheses analogous to (A.4) in each of the resulting 

cells, and so on recursively, until 𝐻𝐻0 can no longer be rejected.  At this point, the algorithm has 

identified the optimal partition of the population into types: ℑ = ⋃ ℬ𝑏𝑏𝑏𝑏=1,…𝐵𝐵 . Over this final 

partition, the likelihood function given by (A.2) and the weights given by (15) are used to solve (14), 

yielding the final parameter vector 𝜃𝜃�𝑁𝑁(𝑐𝑐), which fully characterizes the conditional distribution 

𝐹𝐹 �𝑦𝑦𝑞𝑞𝑞𝑞 ,𝜃𝜃(𝑐𝑐)� in each type (terminal node) ℬ𝑏𝑏.   

These parametric conditional distributions can then be inverted to yield the estimated type quantile 

functions  𝑦𝑦�𝑞𝑞𝑞𝑞 = 𝐹𝐹−1 �𝑞𝑞, 𝜃𝜃�(𝑐𝑐)�, from which a measure of ex-post inequality of opportunity can be 

computed as 𝐼𝐼𝑂𝑂�𝑝𝑝 = ∫ 𝑤𝑤𝑞𝑞𝐼𝐼𝑞𝑞�𝑦𝑦�𝑞𝑞𝑞𝑞� 1
𝑞𝑞=0 . 
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Appendix 2: An illustration of the M-fluctuation test using made-up data 

The algorithm employs an M-fluctuation test on parameters stability to allow the number of 

Roemerian types proliferate. Purely as an example, we show how the algorithm performs the 

partition in types in a simplified hypothetical case in which father’s occupation is the only 

circumstance and the logarithm of income is the outcome of interest.22 The objective is testing 

whether the parameters defining the income distribution are significantly different when the 

population is split in two subgroups.  

Following the steps described in the main text, we set a confidence level (𝛼𝛼 = 0.01) and, in order to 

obtain a graphical intuition of the instability of the parameters, a lower order of the polynomial (𝜔𝜔 

= 3), hence using four parameters to estimate the log-income distribution. We generate a mock 

dataset to split incomes according to father occupation, which takes 6 categories ordered from 

smaller associated expected income to higher associated expected income.  

In Figure A.1 below, we show the values of the parameters in the Bernstein polynomial associated 

with each split. Beginning from the left-hand side in both plots, the first four points represent the 

parameters associated with the nodes created when we split the population in two groups: those 

whose father occupation is 1 (right-hand plot) and the rest, that is, those whose father’s occupation 

is 2 to 6 (left-hand plot). As we move to the right through the X-axis, we generate other splits, move 

observations associated to categories in fathers’ occupation from one node to the other, changing 

the resulting conditioned distributions.  It is evident from Figure A.1 that, when transitioning 

observations from one terminal node to another, parameters undergo a change in magnitude. 

However, it is not immediately apparent which partition exhibits the most statistically significant 

parameter instability. That is, which occupational category should be selected as splitting point.  

 

  

 
22 Ours is a different version of a similar example proposed by Kopf, Augustin, and Strobl (2013). 
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Figure A1.  Values for the Parameters of the Bernstein Polynomial in each node 

 
Source: Own Elaboration on NIDS 5 

 

That selection is guided by the M-fluctuation test. Figure A.2 shows the value of the statistics for 

the tests described in step 4. The higher value (associated with a smaller p-value) is achieved when 

the bottom node has categories 1 and 2. That is the splitting point, as confirmed in Figure A.2. The 

population is thereby divided in two groups: those with father’s occupation equal to 2 or less, and 

the rest, generating the simple tree in Figure A.3.  

 

Figure A2. M-fluctuation quadratic test Statistics 

 
Source: Own Elaboration on NIDS 5 
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Figure A3. Transformation Tree (example)  

 
Source: Own Elaboration on NIDS 5 

 

This partition into two types allows us, for instance, to graphically explore Roemer’s theory by 

plotting the cumulative density functions (CDF) of the outcome of interest by types (Figure A4). 

Here, the colored lines represent the empirical cumulative density functions (ECDF), while the 

dashed lines represent the interpolation of the distribution predicted with the polynomial 

approximation. 

  

Figure A4. ECDFs (example) 

 
Source: Own Elaboration 
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Appendix 3: The Sankey Plot  

The Sankey plot below, also known as an alluvial diagram, connects the ex-ante and ex-post types 

to which each individual in the sample belongs. Ex-ante types are on the left-hand column, and ex-

post types are the right. In both columns, types are ordered from higher income (top) to lower 

income (bottom). While for the white population the only difference between the two approaches 

is that the single ex-ante type is split into two by the ex-post TrT algorithm, much more movement 

is observed among poorer types.    

 

Source: Own elaboration from NIDS 5.  
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Appendix 4: Type composition by circumstances.  

Table A1: Ethnicity by ex-post types 

 Circum 1 2 3 4 Type Sh. 
Types Mean 0.67 1.82 1.07 3.61  

8 0.39 28.52 0 0 0 28.52 
13 0.49 11.28 0.07 3.08 0 14.43 
7 0.55 14.44 0 0 0 14.44 

10 0.64 0 0.9 3.19 0 4.09 
17 0.65 2.29 0.1 0.47 0 2.86 
15 0.75 1.36 0.03 0.4 0 1.79 
22 0.77 5.25 0 0 0 5.25 
9 0.8 3.3 0 0 0 3.3 

16 0.93 2.01 0 0.79 0 2.81 
23 1.24 3.08 0 0 0 3.08 
20 1.31 6.73 0 0 0 6.73 
24 1.9 0 0.81 3.62 0 4.43 
26 2.76 0 0 0 3.26 3.26 
27 4.11 0 0 0 5.02 5.02 

 Circ Share 78.27 1.90 11.55 8.28 100 

Source: Own elaboration from NIDS 5. Circumstance categories are 1: African; 2:  
Asian/Indian; 3:  Coloured; 4:  White. Circum. Stands for Circumstance Categories, Type Sh. 

stands for Type Shares, Circ. Sh. stands for Circumstance Shares. 

Table A.2: Sex by ex-post types 

 Circum 0 1 Type Sh. 
Types Mean 1.15 0.88  

8 0.39 0 28.52 28.52 
13 0.49 4.71 9.72 14.43 
7 0.55 14.44 0 14.44 

10 0.64 1.55 2.55 4.09 
17 0.65 1.1 1.75 2.86 
15 0.75 0.63 1.15 1.79 
22 0.77 0 5.25 5.25 
9 0.8 1.25 2.06 3.3 

16 0.93 0.99 1.82 2.81 
23 1.24 0 3.08 3.08 
20 1.31 6.73 0 6.73 
24 1.9 1.88 2.55 4.43 
26 2.76 1.49 1.77 3.26 
27 4.11 2.37 2.64 5.02 

 Circ Share 37.14 62.86 100 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Female; 1: Male. Circum. 
Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for 

Circumstance Shares.
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Table A.3: Father Education by ex-post types 

 
 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Non-Educated, Then the remaining values correspond to Grades from 
1 to 12 (or more). Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for Circumstance Shares. 

  0 1 2 3 4 5 6 7 8 9 10 11 12 Type Sh. 
Types Mean 0.49 0.43 0.66 0.63 0.72 0.68 0.68 0.8 1.32 0.89 1.85 1.33 2.55  

8 0.39 25.35 0.23 0.37 0.55 0.64 0.47 0.44 0.47 0 0 0 0 0 28.52 
13 0.49 11.46 0.15 0.37 0.45 0.59 0.4 0.38 0.63 0 0 0 0 0 14.43 
7 0.55 12.29 0.12 0.19 0.33 0.44 0.34 0.45 0.27 0 0 0 0 0 14.44 

10 0.64 2.7 0 0.08 0.29 0.19 0.18 0.22 0.44 0 0 0 0 0 4.09 
17 0.65 1.58 0.04 0.12 0.29 0.14 0.23 0.16 0.29 0 0 0 0 0 2.86 
15 0.75 0.96 0.01 0.03 0.12 0.1 0.14 0.16 0.26 0 0 0 0 0 1.79 
22 0.77 0 0 0 0 0 0 0 0 2.78 0.74 1.01 0.71 0 5.25 
9 0.8 1.75 0.04 0.19 0.1 0.15 0.36 0.38 0.33 0 0 0 0 0 3.3 

16 0.93 1.16 0.07 0.15 0.19 0.27 0.18 0.33 0.45 0 0 0 0 0 2.81 
23 1.24 0 0 0 0 0 0 0 0 0 0 0 0 3.08 3.08 
20 1.31 0 0 0 0 0 0 0 0 1.93 0.53 0.89 0.48 2.89 6.73 
24 1.9 0 0 0 0 0 0 0 0 1.47 0.41 1.01 0.25 1.29 4.43 
26 2.76 0.12 0 0.01 0 0.01 0.08 0.1 0.15 1.16 0.14 1.48 0 0 3.26 
27 4.11 0 0 0 0 0 0 0 0 0 0 0 0.16 4.85 5.02 

 Circ Share 57.38 0.67 1.52 2.32 2.53 2.37 2.63 3.29 7.35 1.82 4.4 1.6 12.11 100 
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Table A.4: Mother Education by ex-post types 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Non-Educated, Then the remaining values correspond to Grades from 
1 to 12 (or more) . Circum. Stands for Circumstance Categories, Type Sh. stands for Type Shares, Circ. Sh. stands for Circumstance Shares. 

 Circum 0 1 2 3 4 5 6 7 8 9 10 11 12 Type Sh. 
Types Mean 0.48 0.53 0.58 0.56 0.74 1.02 0.69 1.01 1.34 1.19 1.85 1.05 2.51  

8 0.39 24.49 0.19 0.44 0.66 1.11 0 0.58 0.6 0 0.25 0 0.21 0 28.52 
13 0.49 11.55 0.25 0.53 0.63 1.04 0 0 0 0 0.21 0 0 0.22 14.43 
7 0.55 12.37 0.08 0.11 0.36 0.42 0 0.33 0.47 0 0.16 0 0.14 0 14.44 

10 0.64 2.82 0.03 0.04 0.1 0.1 0.25 0.12 0.29 0.21 0 0.1 0 0.05 4.09 
17 0.65 0.77 0.01 0.07 0.19 0.08 0.05 0.22 0.21 0.44 0.11 0.19 0.14 0.37 2.86 
15 0.75 0 0 0 0 0 0.33 0.29 0.47 0.47 0 0.12 0.11 0 1.79 
22 0.77 1.01 0.03 0.08 0.18 0.23 0.19 0.42 0.38 1.26 0.27 0.45 0.3 0.42 5.25 
9 0.8 0 0 0 0 0 0.89 0 0 1.44 0 0.51 0 0.47 3.3 

16 0.93 0 0 0 0 0 0.55 0.44 0.73 0.78 0 0.26 0.05 0 2.81 
23 1.24 0.23 0 0.03 0.04 0.05 0.04 0.05 0.14 0.18 0.08 0.27 0.33 1.63 3.08 
20 1.31 0.95 0 0.07 0.07 0.12 0.22 0.27 0.42 0.99 0.37 0.67 0.48 2.1 6.73 
24 1.9 0.37 0 0.1 0.16 0.21 0.18 0.22 0.44 1.03 0.26 0.49 0.12 0.85 4.43 
26 2.76 0.11 0 0 0 0 0.01 0.08 0.15 0.85 0.12 1.06 0.05 0.82 3.26 
27 4.11 0.05 0 0 0 0.01 0 0 0.03 0.19 0.07 0.64 0.1 3.92 5.02 

 Circ Share 54.73 0.59 1.47 2.38 3.38 2.71 3.03 4.32 7.83 1.9 4.77 2.03 10.85 100 
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Table A.5: Father Occupation by ex-post types 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Army; 1: Managers; 2: Professionals; 3: Technicians; 4: Clerks; 5: 
Service; 6: Skilled; 7: Craft; 8: Operators; 9: Elementary; 10 Others. Circum. Stands for Circumstance Categories, Type Sh. stands for Type 

Shares, Circ. Sh. stands for Circumstance Shares.

 Circum 0 1 2 3 4 5 6 7 8 9 10 Type Sh. 
Types Mean 1.05 2.59 2.37 2.09 2.37 1.17 0.82 1.33 0.7 0.86 0.59  

8 0.39 0.12 0.14 0.14 0.22 0.03 1.04 0.12 1.27 2.55 4.48 18.4 28.52 
13 0.49 0.04 0.11 0.08 0.11 0.08 0.74 0.16 1.74 2.01 5.99 3.36 14.43 
7 0.55 0.12 0.14 0.07 0.15 0.04 0.77 0.11 0.69 1.66 2.56 8.14 14.44 

10 0.64 0 0.03 0.04 0.01 0 0.18 0.05 0.78 0.34 1.36 1.3 4.09 
17 0.65 0.01 0.03 0.08 0.1 0.01 0.33 0.04 0.48 0.51 0.71 0.55 2.86 
15 0.75 0.03 0 0.01 0.08 0 0 0 0.69 0 0 0.97 1.79 
22 0.77 0.03 0.1 0.19 0.11 0.08 0.63 0 0.7 1.18 0.77 1.47 5.25 
9 0.8 0.01 0.05 0.01 0.03 0.01 0.16 0.05 0.32 0.53 0.42 1.69 3.3 

16 0.93 0 0.05 0 0 0.03 0.32 0.03 0 0.9 1.48 0 2.81 
23 1.24 0.04 0.23 0.74 0.1 0.1 0.48 0.01 0.19 0.42 0.19 0.58 3.08 
20 1.31 0.07 0.45 0.88 0.32 0.08 0.89 0.01 0.92 0.96 0.74 1.41 6.73 
24 1.9 0.04 0.19 0.42 0.16 0.14 0.37 0.08 1.15 0.48 0.71 0.67 4.43 
26 2.76 0.03 0.26 0.08 0.18 0.07 0.27 0.1 0.97 0.4 0.77 0.14 3.26 
27 4.11 0.03 0.86 1.4 0.53 0.23 0.25 0.1 0.75 0.21 0.4 0.26 5.02 

 Circ Share 0.58 2.64 4.15 2.10 0.9 6.43 0.88 10.65 12.16 20.58 38.93 100 
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Table A.6: Mother Occupation by ex-post types 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Own elaboration from NIDS 5. Circumstance categories are 0: Army; 1: Managers; 2: Professionals; 3: Technicians; 4: Clerks; 5: 
Service; 6: Skilled; 7: Craft; 8: Operators; 9: Elementary; 10 Do not work. Circum. Stands for Circumstance Categories, Type Sh. stands for 

Type Shares, Circ. Sh. stands for Circumstance Shares

 Circum 0 1 2 3 4 5 6 7 8 9 10 Type Sh. 
Types Mean 0.24 2.07 2.69 2.9 2.98 1.4 0.68 1.06 1.81 0.72 0.72  

8 0.39 0 0 0 0 0 0 0.08 0 0 0 28.44 28.52 
13 0.49 0 0.04 0 0.18 0.07 0 0 0 0 14.14 0 14.43 
7 0.55 0 0 0 0 0 0 0.05 0 0 0 14.39 14.44 

10 0.64 0 0 0 0 0 0 0.05 0 0 0 4.04 4.09 
17 0.65 0 0 0.82 0 0 1.34 0 0.6 0.08 0 0 2.86 
15 0.75 0 0.01 0 0.04 0.04 0 0 0 0 1.69 0 1.79 
22 0.77 0 0 0.37 0.07 0.07 0.22 0 0.11 0.04 1.51 2.86 5.25 
9 0.8 0.01 0 0 0 0 0 0.01 0 0 0 3.28 3.3 

16 0.93 0 0 0 0.05 0.03 0 0 0 0 2.73 0 2.81 
23 1.24 0 0.07 0.86 0.1 0.11 0.18 0 0.1 0.01 0.42 1.23 3.08 
20 1.31 0 0.07 0.97 0.11 0.12 0.38 0.01 0.15 0.05 1.73 3.12 6.73 
24 1.9 0 0.08 0.52 0.14 0.11 0.37 0 0.18 0.07 1.25 1.71 4.43 
26 2.76 0 0.1 0.52 0.18 0.48 0.3 0 0.12 0 0.32 1.25 3.26 
27 4.11 0 0.21 1.73 0.53 0.66 0.3 0 0.08 0 0.29 1.22 5.02 

 Circ Share 0.01 0.58 5.8 1.4 1.69 3.10 0.22 1.34 0.26 24.06 61.55 100 
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