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Abstract

The analysis of many economic phenomena requires partitioning societies into mutually
exclusive groups of individuals sharing similar characteristics and studying the extent at
which these groups are distributed with different intensities across ordered realizations
of a relevant outcome, such as income, health or cognitive score levels. When the
groups are similarly distributed, their members could be seen as having equal chances to
achieve any of the attainable outcomes. Otherwise, a form of dissimilarity prevails. This
paper introduces a novel empirical robust criterion for dissimilarity which is based on
sequential dominance comparisons and is capable of ordering multi-group distributions
defined over ordinal outcomes. The criterion is characterized in terms of existence
of a finite sequence of basic transformations of the data regarded to as unambiguously
preserving or reducing dissimilarity. An application to Sweden highlights the usefulness
of the criterion to identify the intergenerational distributional consequences of a large
education reform which took place in the 1960s.
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1 Introduction

1.1 The problem

Many economic phenomena are concerned with the way a society is split into mutually

exclusive groups, defined for instance along the lines of gender, age, ethnicity, parental

background, and the way such groups are distributed across ordered realizations of an

underlying outcome of interest.

For instance, discrimination occurs when groups attain different wage levels with dif-

ferent intensities (see for instance Gastwirth 1975, Dagum 1980, Jenkins 1994). Unfair

inequality arises instead when the chances of attaining a certain outcome (such as self-

assessed health, education, human capital, skills or income) differ across individuals with

different characteristics (for a review, see Roemer and Trannoy 2016). Transition matrices,

specifying the probability of achieving a given percentile in the child’s income distribution

conditionally on the percentile of departure in the parents’ income distribution, are often

employed to assess intergenerational mobility (see for instance Dardanoni 1993, Jäntti and

Jenkins 2015). A transition matrix displays low mobility when the probability of achieving

any of the percentiles in the children income distribution depends on the income of the par-

ents. Conversely, origin independence is achieved when child distributions coincide across

parental background groups.

There is widespread agreement in the literature about what constitutes lack of discrim-

ination, or a fair distribution of resources, or origin independence. These are situations

in which the groups are similarly distributed across the attainable outcomes. The relevant

notion of similarity dates back to the work of Gini (1914, p. 189), where it is argued that

two (or more) groups are similarly distributed whenever “the overall populations of the two

groups take the same values with the same frequency.”When this is the case, groups are

equally represented at each realization, albeit they may take on different outcomes with

different intensity. Conversely, the case of maximal dissimilarity occurs when the groups

membership can be inferred from the knowledge of the realization. This is always the case

when the groups distributions are not overlapping, i.e. the highest realization achieved by

any of the groups is smaller than the lowest realization achieved by any other group which

dominates it in the sense of first order stochastic dominance. Arguably, all these cases iden-

tify situations of maximal discrimination (as in Le Breton, Michelangeli and Peluso 2012),

immobility (Dardanoni 1993, Van de gaer, Schokkaert and Martinez 2001) or social envy

(Roemer 1998, Fleurbaey 2008).
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Figure 1: Configurations F (solid lines) and G (dashed lines) on the left panel, and their
representations preserving ordinal information (right panel).

All other cases display some dissimilarity, but not maximal dissimilarity. This paper

investigates the normative foundations for ranking sets of two or more distributions defined

over ordinal outcomes according to the extent of dissimilarity that they exhibit. Sets of

multi-group distributions are denoted configurations. A configuration could represent, for

instance, a country, a year or a certain policy regime. The dissimilarity order of config-

urations that we envision should value the degree at which groups are disproportionally

represented across realizations in each configuration and then rank configurations accord-

ingly. The best-ranked configuration by this order is the one in which groups are equally

represented at any realization, i.e. when similarity prevails. The next section provides

an operational definition of such criterion and illustrates the way this paper addresses its

limitations while contributing to the literature.

1.2 Contribution of the paper

Consider first the basic situation in which configurations consist of two groups i = 1, 2, each

represented by its cumulative distribution function (cdf) Fi. We assume in this expositional

example, for simplicity, that Fi(x) is continuous for x ∈ R. We are interested in ranking

configurations F = (F1, F2) and G = (G1, G2) according to the degree of disproportionality

in groups cdfs that they exhibit. Examples of F and G are reported in panel a) of Figure

1.

Comparing the vertical gap between cdfs evaluated at any realization x, that is |F1(x)−
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F2(x)| and |G1(x)−G2(x)|, yields an intuitive criterion for assessing relative disproportion-

ality in the shares of both groups across configurations F and G.1 For some problems,

however, this criterion may not be appropriate. This is the case, for instance, when the

outcomes in two configurations are measured on different scales. Test score achievements,

material well-being, and self-reported health or education, could be indeed measured on dif-

ferent scales across countries and time. It could also be the case when the realizations are the

residuals of an underlying estimating model that requires adopting non-linear transforma-

tions of the outcomes(such as applying the log-scale, see also Athey and Imbens 2006, Bon-

homme and Sauder 2011). Furthermore, outcome x may not correspond to the relevant

variable according to which dissimilarity between configurations should be assessed. For

instance, a policymaker could be interested in comparing two configurations by the dis-

similarity they exhibit, but these evaluations should be based on distributions of unknown

transformations (such as utility evaluations) of the outcomes and not on the distribution

of the outcomes. In all these cases the dissimilarity criterion should guarantee consistency

of the ranking of the configurations irrespective of monotonic increasing transformations

applied to the variables considered in each configuration. For this purpose the comparisons

of the gaps in the two configurations could be made at quantiles associated with fixed posi-

tions of the inividuals in a given distribution that depends on F1 and F2 for configuration F

(and on G1 and G2 respectively for configuration G) instead of considering the same level

of x.

We can make use of reference distributions, denoted F and G, in order to identify

comparable realizations across configurations and then compare groups disproportionalties

in correspondence to those realizations. A possible candidate for a reference distribution

F (and G) could be the symmetric average groups distribution F (x) := 1
2F1(x) + 1

2F2(x)

(computed analogously for G).2 Examples of average groups distributions are given by F

and G, represented with gray curves in Figure 1.

The quantiles of F and G at any p ∈ [0, 1], which are denoted respectively F
−1

(p) and

G
−1

(p), identify the comparable realizations across configurations. Evaluating F and G

at these quantiles the obtained quantity Fi(F
−1

(p)) measures the proportion of group i

1A variety of contributions have analyzed distance between distributions (Shorrocks 1982, Ebert 1984,
Chakravarty and Dutta 1987), divergence (Magdalou and Nock 2011) as well as welfare gaps (Andreoli,
Havnes and Lefranc 2019).

2The Symmetric average groups distribution satisfies few relevant properties: F is a function of the data
(i.e., F : R 7→ [0, 1] is an onto function mapping F (x) := F (F1(x), F2(x)) at any x); F is consistent with
the notion of similarity (if F1 = F2 = F then F = F ); F treats all groups symmetrically irrespectively of
their labels (that is, F (F1, F2) = F (F2, F1)) and responds to monotone changes in F along the domain of
realizations (that is, F (F1(x), F2(x)) < F (F1(x) + ε1, F2(x) + ε1) ∀ε1, ε2 ∈ [0, 1] small enough).
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achieving at most the same realizations as the poorest p100% of the symmetric average

group distribution F . Define Gi(G
−1

(p)) accordingly. Dissimilarity cannot be larger in G

compared to F if disproportionality in groups cdf is smaller in the former configuration

compared to the latter at every quantile of the average distributions F and G, that is if:

|G1(G
−1

(p))−G2(G
−1

(p))| ≤ |F1(F
−1

(p))− F2(F
−1

(p))|, ∀p ∈ [0, 1]. (1)

This condition is illustrated in Panel b) of Figure 1 where one can note that there is less

disproportionality between groups in G than in F , implying that G displays at most as

much dissimilarity between groups as F .

The condition in (1) defines a robust dissimilarity criterion that relies exclusively on in-

formation about disproportionality in groups composition. It has some interesting features.

First, dissimilarity comparisons based on (1) are invariant to the shape of F and G, which

depend on features of the unequal distribution of realizations within groups across p. The

dissimilarity criterion is instead focused on between-group inequalities among F1 and F2 at

any p separately.

Second, the criterion is naturally bounded by the cases of similarity (when F1 = F2 = F ,

the distributions coincide with the diagonal in Panel b)) and of maximal dissimilarity (when

F1 and F2 do not overlap, the distributions coincide with the unit square in Panel b)).

Disproportionality between groups turns out to be irrelevant for comparing configurations

once distributions do not overlap. In this case, either Fi(0.5) = 0 or Fi(0.5) = 1 and

its value is constant over realizations not belonging to the joint support, implying that

any additional consideration about dissimilarity should necessarily rely on the cardinal

scale of the outcome domain. Finally, comparing disproportionality based on reference

distributions guarantees invariance to any monotone transformation of the outcomes scale,

thereby leading to dissimilarity evaluations that preserve exclusively ordinal information of

the data.3

The operational definition of dissimilarity embedded in criterion (1) is, to our knowledge,

novel, in the sense that its normative justification, its empirical implementation and its

extension to the multi-group (i.e. to configurations made of more than two distributions)

have not been yet treated in the literature. This paper fills these gaps.

3To see this, let h be a monotone mapping of x yielding u := h(x). If x is income, u could be the utility

evaluation of an income realization. Let Xi ∼ Fi and h(Xi) = Ui ∼ F̃i, yielding F̃ = (F̃1, F̃2) with F̃ .

Select u, x so that F̃ (u) = p = F (x). For any i (and similarly for G), one has that F̃i(F̃
−1

(p)) := Pr[Ui ≤
F̃
−1

(p)] = Pr[Ui ≤ u] = Pr[h−1(Ui) ≤ x] = Pr[Xi ≤ x] = Pr[Xi ≤ F
−1

(p)] = Fi(F
−1

(p)). Any increasing
transformation applied to outcomes of F and/or of G preserves the graphs in panel b) of Figure 1.
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The normative justification for assessing dissimilarity as disproportionality rests on the

properties of the set of transformation of the data that, when applied to a given configura-

tion, either preserve or reduce the extent of dissimilarity that it exhibit. Transformations

that reshape the outcome scale and the labeling of groups, without affecting dispropor-

tionality across groups are regarded to as dissimilarity preserving (see also Andreoli and

Zoli 2022). Moreover, dissimilarity evaluations should not depend on the order of the

groups, as implied by an anonymity requirement with respect to the labeling of the groups.

We also consider a unique dissimilarity-reducing transformation, which consists in exchang-

ing deteriorations in outcomes for a better-off group with improvements in outcomes for a

worse-off group (for applications in multidimensional inequality analysis, see Epstein and

Tanny 1980, Tchen 1980, Atkinson and Bourguignon 1982, Faure and Gravel 2021). A

group is better-off (worse-off) if it is represented with higher (lower) intensity at the bot-

tom of the outcomes domain compared to another. By effect of an exchange, the relative

cumulative frequency of the worse-off group decreases whereas that of the better-off groups

rises, thereby reducing groups disproportionality.

Disproportionality is groups frequencies cannot be increased if one configuration is ob-

tained from another through a sequence of such transformations. Testing for the existence

of such a sequence is a daunting task. Our main result, in Theorem 1, identifies a feasible,

empirical test that allows to verify whether such sequence of operations exists involving

in a finite number of steps. We prove that the testing algorithm applies to configurations

with two or more distributions using a robust criterion for comparisons of inequality in

groups cumulative distributions -i.e., dominance in Lorenz curves at any quantiles of the

symmetric average distribution4- in order to conclude on groups disproportionality.

We illustrate the feasibility of the test in a policy evaluation study. In the study, we

resort on data and identification strategy in Meghir and Palme (2005) in order to compare

actual earnings opportunities of those treated by the 1960s Swedish education reform to

counterfactual earnings distributions that would have prevailed in the absence of the reform.

We assess the distributional effects of the reform across the population, divided into 32

mutually exclusive groups defined by their gender, parental background, skills and place

of birth. Inequalities related to those differences are unfair and deserve compensation.

The dissimilarity criterion is used to test the effects of the reform for reducing unfair

inequality. There are 1,263 relevant thresholds to be tested, yielding to more than 40,000

4Notice that the Lorenz curve coordinates are given by the sequential sum of the proportions Fi(F
−1

(p)),
i = 1, . . . , d, ranked in ascending order. Disproportionality increases as the share of the least represented
group at p decreases.
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estimates of Lorenz curves across treatment and counterfactual configurations. Despite

complexity, we can represent all such comparisons on a graph and conclude on dominance

via visual inspection of it. We find that we cannot conclude that the Swedish reform reduced

dissimilarity between earnings opportunities of different groups.

The impossibility to conclude owes to the incompleteness of the ordering of configura-

tions implied by the implementation algorithm. In fact, the dissimilarity order of configura-

tions that we investigate is robust not only to the way outcomes in each distribution can be

transformed, but also to the way in which dissimilarity between distributions is valued. An

evaluation could represent, for instance, preferences of a policymaker interested in a policy

evaluation assessment. It is shown that the testing algorithm ranks configurations only

when the order is backed up by unanimous agreement among all possibly ways of valuing

dissimilarity that are consistent with the aforementioned transformations. When the order

fails, disagreement exists. Refining the set of admissible evaluations could eventually lead

to more conclusive results.

1.3 Organization of the paper

For expositional convenience, the criterion in (1) has utilized continuous distributions to

illustrate how the concept of dissimilarity related to disproportionality. The rest of the

paper, however, deals with discrete distributions of ordered outcomes. This setting is ap-

propriate to analyze with situations in which realizations correspond to ordered categories,

such as self-reported health or education levels. The discrete setting is also relevant for em-

pirical analysis of dissimilarity when outcomes are discrete or continuous, such as income

or test score achievements. In this latter case, outcomes may correspond to groups pro-

portions observed at any realization of an (arbitrarily) fine grid of outcomes, which is later

used to estimate the continuous empirical distribution via interpolation methods.5 Discrete

distributions can be organized into matrices, each representing a configuration. Section 2

provides notation and introduces the axiomatic model. Section 3 introduces the dissimilar-

ity empirical test and provides the main result of the paper. The result is then related to

existing literature on stochastic orders, multidimensional inequality, mobility and inequal-

ity of opportunity. Section 4 provides extensions. First, it shows that the dissimilarity test

is robust vis-à-vis the way the algorithm is tested on the data. Second, it characterizes an

intuitive family of dissimilarity indices and shows its relation with the dissimilarity robust

5Remember that any continuous distribution, such as the cdf of a continuously measurable outcome, can
always be seen as the limit case of a stepwise, discrete distribution (see Asplund and Bungart 1966).
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criterion. Section 5 reports results from the policy evaluation exercise. Section 6 concludes.

Proofs are collected in Appendix A.

2 A framework for robust dissimilarity comparisons

2.1 Notation

We represent data through distribution matrices of size d×n, depicting sets of distributions

(indexed by rows) of d ≥ 2 groups across n ≥ 2 classes. Each class represents one of a finite

number of disjoint ordered realizations of an underlying outcomes variable. Notice that n

can be very large (for instance, corresponding to a very fine grid of realizations) but it may

also hold that n < d. Distribution matrices with the same number of groups but variable

number of classes are collected in the set

Md :=

A = (a1, . . . ,aj , . . . ,anA) : aj ∈ [0, 1]d,

nA∑
j=1

aij = 1 ∀i, for nA ≥ 2

 ,

where aij is the proportion (empirical frequency) of group i observed in class j. The column

vector aj collects the proportions of all groups in class j. The distribution matrices inMd

are hence row stochastic, meaning that matrix A ∈Md represents a collection of d elements

of the unit simplex ∆nA .

Outcomes are linearly ordered and the arrangement of the classes is consistent with this

order (i.e., if j < k then realization j is not better than realization k). The cumulative

distribution matrix,
−→
A ∈ Rd,nA

+ , is obtained by sequentially cumulating the elements of the

classes of A, so that −→a k :=
∑k

j=1 aj . Moreover, let denote with p1, . . . , pn the realizations

of the (symmetric) average cumulative groups distribution across groups, so that pj =

1
d

∑d
i=1
−→a ij ∀j.

Example. Let A ∈M3 and its cumulation
−→
A be:

A =


0.4 0.1 0.3 0.2

0.1 0.4 0 0.5

0.1 0.1 0.6 0.2

 and
−→
A =


0.4 0.5 0.8 1

0.1 0.5 0.5 1

0.1 0.2 0.8 1

 . (2)

Here, a13 = 0.3 indicates that the frequency of group one in class three is 30%, while −→a 13 =

0.8 indicates that the cumulative frequency of group one achieving realizations smaller or

equal than those in class three is 80%. The average cumulative groups distribution gives
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p1 = 0.2, p2 = 0.4, p3 = 0.7 and p4 = 1.

Furthermore, we say that the distribution of group h first order stochastic dominates

that of groups ` (or, in short, group h dominates group `) whenever −→a hj ≤ −→a `j for all

classes j = 1, ..., n, with a strict inequality (<) holding for at least a class. That is, ` is

over-represented at the bottom of the realizations domain compared to h. This makes `

the disadvantaged group.

We follow the convention of using boldface letters to indicate column vectors, so that ij

is a column vector corresponding to column j of an identity matrix In of size n, 1n =
∑

j ij

is the column vector with n entries all equal to 1 and similarly 0n := (0, . . . , 0)t, where the

superscript “t” denotes transposition. We denote Pn the set of n×n permutation matrices.

2.2 Axioms

A dissimilarity ordering is a complete and transitive binary relation 4 on the set Md

with symmetric part ∼ that ranks B 4 A whenever distributions in B display at most as

much dissimilarity as distributions in A.6 The ordering 4 may represent, for instance, a

particular way to evaluate dissimilarity according to the preferences of a decision maker,

who is interested in ranking configurations by the extent of dissimilarity they exhibit.

In this section, we provide few, intuitive properties that every meaningful ordering 4

should satisfy. Properties are based on transformations of the data that, when applied

to any given distribution matrix A, are bound to produce a new distribution matrix B

that cannot display more dissimilarity than A, thereby leading to B 4 A by all orderings

consistent with such operations.

The first operation that we consider regards every exchange operation as not dissim-

ilarity increasing. Consider a distribution matrix A ∈ Md in which group h dominates

`. Unless the distributions of groups h and ` coincide, there must exist a class k where

−→a hk <
−→a `k such that a`k > 0. An exchange operation consists of an upward movement of a

small enough proportion ε > 0 of group `, over-represented at the bottom of the realizations

domain, from class k to any other class k′ > k associated with better realizations. This

change is counterbalanced by a downward movement of an equal proportion ε of group h

from class k′ to k. By “small enough” we mean that, after the exchange, the dominance

relations between all groups (and, notably, between h and `) are preserved. This bears two

6For any A, B, C ∈ Md the relation 4 is transitive if C 4 B and B 4 A then C 4 A and complete if
either A 4 B or B 4 A or both, in which case B ∼ A.
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consequences for dissimilarity. First, the amount ε exchanged should, at most, compen-

sate the disadvantage of ` in every class, but it should never swap the ranking of ` and h.

Second, the transfer should not induce a re-ranking of ` and h with respect to the other

groups.

The Exchange Axiom E posits that any such exchange operation is bound not to increase

dissimilarity.

Axiom E (Exchange) For any A, B ∈Md with nA = nB = n where group h dominates

group ` and k′ > k, if B is obtained from A by an exchange transformation such that (i)

bhk = ahk + ε and bhk′ = ahk′ − ε, (ii) b`k = a`k − ε and b`k′ = a`k′ + ε, (iii) bij = aij in all

other cases, (iv) ε > 0 so that if −→a ij ≤ −→a i′j then
−→
b ij ≤

−→
b i′j for all groups i 6= i′ and for

all classes j, then B 4 A.

Any exchange operation preserves the “size” of the distribution matrices under compar-

ison, that is nA = nB = n. Moreover, the exchange always preserves the column margins

of a distribution matrix, denoted 1
d1t

d ·A, which should then coincide in matrices A and

B, that is 1
d1t

daj = 1
d1t

dbj for any class j.

Only matrices with equal size and margins can be compared in terms of exchange trans-

formations. The remaining properties characterize the indifference class of dissimilarity

orderings through operations that are capable of expanding the set of admissible matrices.

The axioms IEC and SC introduce operations that reshape the number and size of the

classes of a distribution matrix without affecting the underlying ordinal information about

the groups distributions, thereby preserving dissimilarity.

Axiom IEC (Independence from Empty Classes) For any A, B, C, D ∈ Md and

A = (A1,A2), if B = (A1,0d,A2) , C = (0d,A) , D = (A,0d) then B ∼ C ∼ D ∼ A.

The IEC axiom emphases dissimilarity originated from non-empty columns of a distri-

bution matrix. If A and B differ only because of |nA−nB| empty classes in one of the two

matrices, then the dissimilarity in A should be regarded to as an equivalent representation

of that in B. Adding or eliminating an empty class changes the number of classes without

affecting proportionality (or lack thereof) of groups distributions.

The second transformation increases the number of classes by splitting proportionally

(the groups densities in) a class into two new classes. This transformation requires to

replicate one column of a distribution matrix and then to scale the entries of the original

and of the replicated columns by the splitting coefficients β ∈ (0, 1) and 1−β, respectively.
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Axiom ISC (Independence from Split of Classes) For any A,B ∈ Md with nB =

nA + 1, if ∃ j such that bj = βaj and bj+1 = (1 − β)aj with β ∈ (0, 1), while bk = ak

∀k < j and bk+1 = ak ∀k > j, then B ∼ A.

The ISC axiom highlights that dissimilarity arises from the disproportionality of the

groups composition in some classes. A split transformation increases the number of classes

and modifies the shape of a distribution matrix, but it does not alter the (dis)proportionality

of the groups. For this reason, it is regarded to as dissimilarity preserving. A finite sequence

of split of classes and insertion/elimination of empty classes can then be used to extend the

degree of comparability in terms of axiom E to matrices with different size and margins.

If the focus is on the departure from similarity and not on what group dominates the

others, then any permutation of the distributions of the groups should not affect dissim-

ilarity. This makes dissimilarity evaluations independent from the label of the groups.

Moreover, if the cumulative distributions of two or more groups coincide in a class, then

any permutation of the name of these groups from that class onward should lead to a new

distribution matrix exhibiting the same degree of dissimilarity. This makes dissimilarity

evaluations capable of valuing disproportionalities in groups composition in each class, ir-

respectively of the way such groups contribute to dissimilarity in previous or later classes.

This concept is formalized through the Interchange of Groups (I) axiom.

Axiom I (Interchange of Groups) For any A, B ∈Md with nA = nB = n, if ∃Πh,` ∈

Pd permuting only groups h and `, such that B = (a1, ...,ak,Πh,` · ak+1, ...,Πh,` · anA)

whenever −→a hk = −→a `k, then B ∼ A.

According to axiom I, if the cumulative distributions of at least two groups coincide

in class k of A, then an interchange of these groups from class k + 1 onward reproduces

the effect of a permutation of the labels of these groups. As a consequence, distributions

are treated symmetrically in dissimilarity comparisons, meaning that both positive and

negative gaps between the distributions contribute equally to measured dissimilarity and do

not compensate each others. When the distributions of the groups can be ordered according

to strong form of stochastic dominance (i.e. groups cumulative distributions never coincide

on p ∈ (0, 1)), similarity is clearly violated but axiom I cannot apply. When, instead, the

distributions of the groups can be ordered by a weaker form of stochastic dominance (or

when there is no dominance relation at all, i.e. the groups cumulative distribution functions

intersect) the gaps in cumulative group distributions compensate (or reverse) in at least

one class, thus indicating a less clear violation of similarity. In these situations, axiom
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I postulates that cases of weak dominance and non-dominance that could arise after the

application of interchange transformations are, per se, sources of indifference in terms of

dissimilarity.

When paired with IEC, axiom I leads to indifference to permutations of groups labels.

Orderings consistent with both axioms regards situations in which the underlying groups

distributions are the same, but their labels do not coincide across matrices, as indifferent.

The dissimilarity axioms are independent. Axioms IEC and ISC have been introduced

by Andreoli and Zoli (2022) in the context of analysis of dissimilarity with categorical out-

comes, and are maintained in our setting. Axioms E and I are instead novel. Andreoli and

Zoli (2022) have introduced an axiom setting independence with respect to permutations of

the classes. This axiom is obviously disregarded when classes are ordered. The possibility of

permuting classes is intertwined with the consequences of the Merge axiom, which is seen as

the prevalent dissimilarity-reducing operations when outcomes are unordered categories. A

merge operation consists in adding, group by group, the frequencies of each group observed

in class k and k + 1 to form a class of larger size, thereby smoothing groups compositional

disparities. A simple example with two groups shows that Exchange and Merge axioms are

incompatible, implying a logical distinction between dissimilarity analysis with ordinal and

with categorical, non-ordered outcomes.

Example (continued). Let A′ ∈ M2 corresponds to rows one and two of A in (2).

Consider merging (element by element) classes 2 and 3 of matrix A′ and then splitting in

proportion 5/8 the obtained class. This gives matrix B′ ∈Md such that:

A′ −−−−−→merge

 0.4 0 0.4 0.2

0.1 0 0.4 0.5

 −−−−→
split

 0.4 0.45
8 0.43

8 0.2

0.1 0.45
8 0.43

8 0.5

 = B′.

Configuration B′ is unambiguously less dissimilar than A′ according to the criterion in

Andreoli and Zoli (2022). Yet, for ε = 0.15:

A′ =

 0.4 0.25− ε 0.15 + ε 0.2

0.1 0.25 + ε 0.15− ε 0.5

 4 B′

for all dissimilarity orderings consistent with axiom E. A reversal in the dissimilarity or-

derings occurs, highlighting the incompatibility of Merge and Exchange axioms.
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2.3 The robust dissimilarity partial order

If B is obtained from A through transformations that are preserving or reducing dissim-

ilarity, then B 4 A is agreed upon by all dissimilarity orderings consistent with axioms

SC, IEC, I and E. We call the partial order originated by the intersection of complete

dissimilarity orderings 4 consistent with these axioms as the robust dissimilarity (partial)

order. The order is robust in the sense that it regards all orderings 4 as equally deserving

and is therefore consistent with each of them. Robustness comes, however, at the cost of

completeness (see Donaldson and Weymark 1998).

The robust dissimilarity (partial) order is transitive, implying that pairwise compar-

isons can be extended into rankings of multiple distribution matrices. Importantly, the

dissimilarity-preserving operations are always source of indifference for the robust partial

order.

Remark 1 Let A ∈Md and let A∗ ∈Md be obtained from A through insertion/elimination

of empty classes, split of classes and interchanges of groups, then A∗ ∼ A for all orderings

4 satisfying axioms SC, IEC and I.

Second, the robust partial order is bounded by intuitive cases corresponding to similarity

or to maximal dissimilarity. A similarity matrix S represents a situation in which the

distributions of all groups coincide and can be represented by the same row vector st ∈ ∆n.

Conversely, a maximal dissimilarity matrix D represents instead situations where each class

is occupied at most by one group and the groups cumulative distributions do not overlap.

Any distribution matrix is always ranked in-between these two cases.

Remark 2 For any S,D,A ∈ Md, S 4 A 4 D for all orderings 4 satisfying axioms SC,

IEC, I and E.

There are infinitely many matrices that can be represented as S and D. They are all

regarded as equivalent representations of perfect similarity or of maximal dissimilarity, the

focus being on differences across group distributions and not on the degree of heterogeneity

in the distribution of each group across realizations. The condition d ≤ n is, nevertheless,

necessary for D to exist. If A is such that d > n, then it can display some dissimilarity,

but not maximal dissimilarity.

Remark 3 Let S,S′ ∈ Md be two distinct similarity matrices and D,D′ ∈ Md be two

distinct maximal dissimilarity matrices, S ∼ S′ and D ∼ D′ for all orderings 4 satisfying

axioms SC, IEC, I and E.
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The robust partial order of dissimilarity cannot be verified empirically, insofar it would

require to assess dominance separately for all orderings consistent with the dissimilarity

axioms. We provide a simple algorithm which is capable of testing for the robust dissimi-

larity ranking in a finite number of steps. The algorithm is a discrete, multi-group version

of the intuitive criterion of dissimilarity (1) outlined in the Introduction.

3 An operational criterion for robust dissimilarity compar-

isons

3.1 The empirical dissimilarity test

We exploit dissimilarity preserving and reducing operations to derive a testing algorithm.

We consider first the possibility of using an arbitrary sequence of transformations applied

to matrices A and B to generate matrices A∗,B∗ ∈Md such that A∗ ∼ A and B∗ ∼ B for

all dissimilarity orderings 4 satisfying axioms SC, IEC, I. The sequence of transformations

can be arbitrarily chosen so that the resulting matrices A∗ and B∗ satisfy the property of

ordinal comparability.

Definition 1 (Ordinal comparability) The matrices A, B ∈Md are ordinal compara-

ble if (i) 1t
d ·A = 1t

d ·B, (ii) group h dominates h+ 1 ∀h = 1, . . . , d− 1 in A and B, and

(iii) group h dominates ` in A if and only if h dominates ` in B.

In ordinal comparable matrices (i) margins coincide, (ii) all groups are ordered according

to stochastic dominance in both matrices and (iii) the order of the groups coincide across the

matrices. Lemma 1 in the appendix provides an algorithm to construct ordinal comparable

matrices of size d× n∗ given any pair A,B ∈Md.

Recall that an exchange operation, when applied to a matrix A, does not affect the

margins or the dominance relations between the groups, thereby yielding to another matrix

B that is ordinal comparable to A by construction. Recall moreover that every exchange

transformation gives rise to rank-preserving progressive transfers (Fields and Fei 1978) in

the space of groups cumulative frequencies within at least one class. Any such class can

be seen as a distribution of groups proportions with average size p, where all groups are

uniformly weighted 1
d . Every exchange transfer implies a reduction in the heterogeneity of

groups cumulative distributions that is always intercepted by Lorenz curves dominance7 for

7Recall that, for any pair of vectors a,b ∈ Rd
+ such that 1

d

∑
i ai = 1

d

∑
i bi = p and a(i), b(i) denote the

i-th smaller elements, b Lorenz dominates a if and only if 1
d

∑h
i=1

1
p
b(i) ≥ 1

d

∑h
i=1

1
p
a(i) (or, equivalently,∑h

i=1 b(i) ≥
∑h

i=1 a(i)) ∀h = 1, . . . , d, with equality holding for h = d (see Marshall, Olkin and Arnold 2011).
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d−dimensional vectors of realizations with equal mean and uniform weights (Kolm 1969,

Cowell 2000, Marshall et al. 2011, Andreoli and Zoli 2020).

All together, the transformations implied by the IEC, ISC, I and E axioms suggest

an empirical dissimilarity test which can be implemented in a finite (but possible large)

number of steps based on the data provided by the distribution matrices.8 The test requires

first to map A,B into two equivalent (from the dissimilarity perspective) representations

A∗,B∗ that are ordinal comparable. Then, the test resorts on comparisons of relative

Lorenz curves for vectors of groups cumulative frequencies corresponding to each of the n∗

classes of A∗ and B∗. Each pair of such vectors
−→
b∗j and

−→
a∗j that have to be compared has

the same size dpj := 1t
d

−→
b∗j = 1t

d

−→
a∗j , for every j = 1, . . . , n∗. The test yields a partial order

of distribution matrices, which is denoted 4∆.

Definition 2 (Dissimilarity test) For any A,B ∈ Md, B 4∆ A if and only if for

A∗,B∗ ∈ Md ordinal comparable that are obtained from A and B respectively through

elimination of empty classes, split of classes, interchanges and permutation of groups oper-

ations, the condition

∆(h, pj) :=
1

d

1

pj

h∑
i=1

−→
b ∗(i)j −

1

d

1

pj

h∑
i=1

−→a ∗(i)j ≥ 0, (3)

holds for all h = 1, . . . , d and for all j = 1, . . . , n∗.

The statistic ∆(h, pj) compares one of the d coordinates of Lorenz curves of vectors
−→
b∗j with the corresponding coordinates of

−→
a∗j . When the statistic is positive, it means

that the combined frequency of the h (out of d) less-represented groups observed in the

bottom pj100% of the population in configuration B∗ is larger (i.e., the h groups are less

under-represented) than the corresponding frequency observed in configuration A∗. There

are d ∗ n values of the ∆(h, pj) statistic to be estimated. If condition (3) holds for every of

the d ∗n cases, then there is strong evidence that disproportionality in groups composition

in B∗ is smaller than in A∗. If the statistic takes on negative values for at least one h, then

Lorenz dominance fails and the criterion is not capable of ordering the two distribution

matrices. When there are only two distributions (which we conventionally denote h = 2),

the statistic ∆(2, pj) coincides with ∆(2, pj) =
∣∣∣−→a∗1j −−→a∗2j∣∣∣− ∣∣∣−→b∗1j −

−→
b∗2j

∣∣∣ ≥ 0, ∀j, which

is a very intuitive measure of disproportionality in groups cumulative shares.

Appendix A.5 provides a simple example that illustrates the implementation of the

8The algorithm has been coded and made available in the replication package of this paper.
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algorithm and its relation to dissimilarity operations.

3.2 Main result and discussion

The main result of the paper shows that the dissimilarity test 4∆ is not only a necessary

but also a sufficient statistic for the robust partial order of dissimilarity.

Theorem 1 For any A, B ∈Md the following statements are equivalent:

(i) B is obtained from A using operations of split of classes, insertion/elimination of

empty classes, interchange and exchange,

(ii) B 4 A for every ordering 4 satisfying axioms SC, IEC, I and E.

(iii) B 4∆ A.

The theorem delivers multiple contributions. First, it provides an implementable algo-

rithm for testing agreement among all dissimilarity orderings that rank distribution matri-

ces consistently with the dissimilarity-reducing and -preserving operations. The algorithm

does not identify the exact sequence of transformations, but it guarantees that such a se-

quence exists finite. The algorithm supporting 4∆ is designed in a way that it is capable

or retaining exclusively ordinal information about the distribution of the underlying or-

dered outcome. This is done by using the quantiles of the average population distribution,

p ∈ [0, 1], as a reference. To see this, notice that the statistic ∆(h, pj) can be represented

on a graph where ps are on the horizontal axis and values of the statistics are reported on

the vertical axis. The fact that the statistic is normalized by the average size of a class,

dpj , allows to compare realizations (and the severity of violations of dominance) across the

domain of p. As we will show, such a property is useful to produce aggregate evaluations

of dissimilarity.

Second, the dissimilarity test is suitable for comparing configurations involving more

than two groups and a variable number of outcomes. Transformations that are regarded as

dissimilarity preserving allow to change the shape of the distribution matrix while preserving

groups proportions across classes. Only Lorenz dominance comparisons based on the ∆

statistic allow to conclude about the dissimilarity ranking of configurations.

Third, the testing algorithm is useful to clarify the relation between dissimilarity and

groups (dis)proportionality across classes. Lorenz dominance is used as the relevant cri-

terion to assess disproportionality, thereby understood as inequality in groups cumulative
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frequencies observed in correspondence to classes of the distribution matrices. Any reduc-

tion in such inequality is necessarily the result of progressive transfers in the space of groups

frequencies, which are implemented through exchange operations.

Results in Theorem 1 relate to different multidimensional dispersion orderings analyzed

in the literature. The Exchange transformation is related to correlation-reducing transfers

analyzed in Epstein and Tanny (1980), Tchen (1980) and Atkinson and Bourguignon (1982).

Axiom E regards distance in cdfs and correlation reduction as two equivalent perspectives

for dissimilarity evaluations. When combined with I, concerns for correlation are wiped out,

insofar any interchange of groups distribution that implements an endogeneous ranking of

distribution by mean of stochastic dominance is always bound to rise correlation. However,

the same operations are seen as a source of indifference by all orderings consistent with

axiom I. The dissimilarity criterion emphasises therefore the distance between distributions.

The dissimilarity test is also related to the orthant tests investigated in the stochastic

orders literature (see Ch. 6.G in Shaked and Shanthikumar 2006). Tchen (1980) has

proposed an orthant test to analyze concordance in matrices with fixed margins, where

the order of the groups is fixed exogenously but group distributions are not necessarily

ordered by stochastic dominance. Differently from Tchen’s result, the dissimilarity test is

capable of ranking configurations in which groups are endogenously ordered by stochastic

dominance relations. Hence, we face more constraints than Tchen in showing that sequential

majorization can be decomposed into a series of exchange transformations that preserve the

order of the groups, which is a reasonable and normatively appealing feature in dissimilarity

analysis (but not necessarily in other situations).

The dissimilarity test can be related as well to the orthant order introduced by Meyer

and Strulovici (2013), which is useful to assess supermodularity in matrices with different

class margins. Their result decomposes the dominance condition implied by the orthant

test into operations that are different (and weaker) than the exchange transformations, but

that are meaningful to characterize supermodular stochastic orderings of interdependence

between the rows of a distribution matrix.

The dissimilarity test yields new contributions to the field of unfair inequality mea-

surement. One example is income mobility analysis. In that case, a distribution matrix

could represent a mobility matrix, yielding the probabilities of moving to a given class of

destination (out of n) conditional on the knowledge of the class of departure (out of d).

Jäntti and Jenkins (2015) provide an extensive discussion about mobility orderings to which

the dissimilarity criterion relates. One of such criteria is the orthant order in Dardanoni
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(1993). In that setting, income levels in the underlying mobility matrix are chosen to repre-

sent quantiles of the distributions of departure and of destination. With this specification,

in fact, groups and classes are equally and uniformly weighted. Theorem 1 provides a

characterization of the orthant order in terms of existence of a sequence of elementary ex-

change transformations mapping one matrix to another while reducing dissimilarity, which

is alternative to Dardanoni’s characterization in terms of social welfare functions. In fact,

each exchange transformation reduces dissimilarity across the rows of the mobility matrix

by improving the mobility prospects (i.e., shifting probability mass towards higher income

quantiles of the distribution of destination) for those individuals starting at the bottom

quantiles of the distribution of departure and by deteriorating the mobility prospects of

those at the top quantiles in the distribution of departure. Theorem 1 applies as well to

mobility assessments in which the distribution of departure and that of destination differ.

This occurs, for instance, when the distribution of departure is given in terms of income

deciles and that of destination in terms of income centiles (so d < n). In more general

cases, the dissimilarity criterion and that in Dardanoni (1993) do not correspond.

If groups identify percentiles of the parental income distribution while classes correspond

to percentiles of the children income distribution, then a distribution matrix could represent

an intergenerational mobility matrix, where both groups and classes are ordered (evidence

on mobility matrices is discussed in Chetty, Hendren, Kline and Saez 2014). When the

mobility matrix is monotone, that is the group in row i+ 1 stochastic dominates the group

in row i for any i, the dissimilarity criterion only requires testing for changes in mobility

across selected percentiles in the distribution of destination, provided that a perfectly mobile

society could be described as one where the distribution of child incomes is independent from

that of the parents’ incomes (as in Shorrocks 1978, Stiglitz 2012, Kanbur and Stiglitz 2016).

For any pair of monotone mobility matrices with fixed margins both for rows and

columns, the dissimilarity criterion in Theorem 1 coincides with the test of the orthants

(Tchen 1980, Dardanoni 1993) and Theorem 1 provides a characterization of it. The dissim-

ilarity partial order extends mobility comparisons when margins differ. This is an important

aspect for empirical research, since in many cases either the parental income distribution

can only be observed with a degree of precision that is smaller (for instance, in deciles) than

that of the distribution of children income (for instance, in percentiles), or the parental in-

come is approximated by, or substituted with, observable circumstances of origin (such

as parental education or the gender). The inequality of opportunity literature empha-

sizes the latter case, the focus being on unfair inequalities originating from dissimilarities
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across circumstances group rather than outcomes inequalities (for a review, see Roemer

and Trannoy 2016, Ferreira and Peragine 2016). Ferreira and Gignoux (2011) stress the

importance of using dissimilarity indices that are sensitive to ordinal information, when

opportunities are measured in dimensions other than income, such as cognitive ability or

well-being. All these situations could not be compared within the mobility framework or

by employing a measurement approach which ignores the ordered feature of the outcomes,

although they could be compared in terms of the robust dissimilarity criteria described in

Theorem 1.

If the mobility matrices are non-monotone, the dissimilarity criterion imposes stronger

conditions than the traditional mobility tests. Empirical evidence suggests that mono-

tonicity of mobility matrices is unlikely to be rejected by the data (Dardanoni, Fiorini and

Forcina 2012).

4 Extensions

4.1 Generalizing the validity of the dissimilarity test

The dissimilarity test invoked in Theorem 1 requires performing a finite number of compar-

isons in order to conclude on B 4∆ A. This number crucially depends on the choice of A∗

and B∗ ordinal comparable. There are infinitely many of such ordinal comparable matrices

that can be obtained from the same pair A and B. We provide a geometric representation

of dissimilarity that is invariant to the choice of A∗ and B∗ and show its relation with

B 4∆ A.

For A ∈ Md, consider the mapping −→a i(p), which is an onto function defined on [0, 1]

such that −→a i(0) := 0, −→a i(pn) = −→a i(1) = 1 and −→a i(pj) = −→a ij for any j = 1, . . . , n. Assume

further that −→a i(p) is piecewise linear for any p ∈ (pj−1, pj), j = 1, . . . , n. Its functional form

obtains by interpolating linearly the cumulative distributions −→a j−1 and −→a j , yielding the

vector of coordinates −→a (p) := (−→a 1(p), . . . ,−→a d(p))t satisfying −→a (p) := (1− λ)−→a j−1 + λ−→a j ,

where λ ∈ [0, 1] is the interpolation parameter. This parameter is identified by the fact that

for p ∈ (pj−1, pj), the average groups distribution gives p = 1
d

∑
i
−→a i(p) = (1−λ)pj−1 +λpj

if and only if λ = (p − pj−1)/(pj − pj−1). Altogether, the compact expression for the

functional form of −→a i(p) (and hence of −→a i(p), ∀i) becomes:

−→a (p) := (1− λ)−→a j−1 + λ−→a j = −→a j−1 +
p− pj−1

pj − pj−1
aj , with p ∈ (pj−1, pj).
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Figure 2: Cdf of distributions in A (left) and their cumulative group distributions (right).

The plot of −→a i(p) lies in the unit square and is piecewise linear over the domain p. The

vector −→a (p) provides the proportion of each group that achieves a realization that is smaller

or equal to that achieved by the p100% of the uniform average distribution, for all p ∈ [0, 1].

Example (continued). The cdfs of groups in A in (2) are drawn on the left hand-

side panel of Figure 2 (group 1 in bold gray, group 2 in dashed, group 3 in light gray).

The cardinalizaton of the classes is arbitrary. The cumulative group distributions of A

in (2) are reported on the right-hand side of Figure 2. To obtain such curves, we first

plot the levels −→a (p) in correspondence to every intercept of the average group distribu-

tion p ∈ {0.2, 0.4, 0.7, 1}. These originate points lying on the unit square with coordinates

(p,−→a i(p)) for i = 1, 2, 3, marked with dots in the figure. Larger dots imply that two or

three groups coordinates coincide. We then sequentially connect these points with linear

segments, starting from the origin and ending on the point (1, 1), to obtain three separate

group cumulative distributions.

The representation −→a (p) of the data is invariant to any dissimilarity-preserving trans-

formation, thereby giving the next remark.

Remark 4 Let A ∈ Md and A∗ be obtained from A through split of classes, inser-

tion/elimination of empty classes and interchanges. Then −→a (p) =
−→
a∗(p) for any p ∈ [0, 1]

up to a permutation of the vectors.

It is intuitive that adding empty classes (so that aj = 0d) does not affect −→a (p). Splitting

proportionally all entries in a class j generates instead the piecewise linear arrangement.

The interchange axiom could rearrange the order of the distributions, but does not affect

the ordered vector (−→a (1)(p), . . . ,
−→a (d)(p)).
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The following corollary provides a criterion in claim (ii) that generalizes to the con-

tinuum the sequential Lorenz dominance test advocated in 4∆. The new criterion ranks

B is at most as dissimilar as A whenever the proportions of the groups adding up to the

bottom p100% of the average of the cumulative distributions across groups in B (i.e
−→
b (p))

dominate, in the sense of Lorenz curve dominance, the corresponding proportions in A (i.e.

−→a (p)), for any p ∈ [0, 1]. Owing to Remark 4, if the condition is verified for all p, then

the partial order B 4∆ A is also verified irrespectively of the choice of A∗ and B∗ ordinal

comparable.

The interesting result is that 4∆, which simply requires to select one pair A∗ and B∗

ordinal comparable among all potential alternatives, is also sufficient to grant dominance

using −→a (p) and
−→
b (p) representations. The choice of the ordinal comparable matrices A∗

and B∗ is hence irrelevant to conclude on B 4∆ A.

Corollary 1 For any A,B ∈Md the following statements are equivalent:

i B 4∆ A;

ii For any p ∈ [0, 1] it holds that:

h∑
i=1

−→
b (i)(p) ≥

h∑
i=1

−→a (i)(p), for any h = 1, . . . , d, (4)

Remark 5 If A,B ∈M2, condition (4) is equivalent to:

|
−→
b 1(p)−

−→
b 2(p)| ≤ |−→a 1(p)−−→a 2(p)|, ∀p ∈ [0, 1].

The remark establishes a relation with the criterion in (1) and provides an additional

characterization of dissimilarity in terms of inequalities in groups composition at any pro-

portion of the average population distribution. The result is useful for characterizing

empirically-relevant indices of dissimilarity.

4.2 Dissimilarity indices

The criterion outlined in Corollary 1 offers an intuitive argument for constructing measures

of dissimilarity that do not depend on the cardinalization of the outcome scale or the

specific choice of the underlying ordinal comparable matrices. Claim (ii) offers, however,

only a partial order of distribution matrices. In this section, we propose a novel family

of dissimilarity measures consistent with the criterion in claim (ii) and with 4∆. The
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family corresponds to linear rank-dependent evaluation functions Dw(A), each of which

is an average, taken over all proportions p, of the inequality displayed by vectors −→a (p).

Inequality is measured as a weighted average, were realizations −→a i(p) are weighted by the

function wi(p). This function is non-decreasing in i at any p and it is assumed to be bounded

and continuous in p almost everywhere. The set of all weighting functions satisfying these

properties is denoted W. For any w ∈ W, let

Dw(A) :=

∫ 1

0

d∑
i=1

wi(p)
−→a (i)(p)dp, (5)

where −→a (i)(p) is the i-th smaller element of vector −→a (p). The index can be interpreted

as the average degree of dispersion of the cumulative distributions of the groups. The

shape of the weighting function wi(p) allows to address the extent of sensitivity of the

index to heterogeneity in groups composition at any proportion p. All weighting functions

are restricted so that
∑

iwi(p) = 0 for all p, which guarantees to focus on distributional

concerns. The dissimilarity test proves to be a necessary and sufficient criterion for assessing

agreement in dissimilarity evaluation among all indices belonging to the family Dw.

Corollary 2 For any A,B ∈Md the following statements are equivalent:

i B 4∆ A;

ii Dw(B) ≤ Dw(A) for all w ∈ W.

Weymark (1981) has outlined a particular parametric class of weighting functions be-

longing to W, denoted the single-parameter S-Gini weights, which generalize the Gini

inequality index. Following notation in Maccheroni, Muliere and Zoli (2005), the discrete

counterpart of the S-Gini weights is obtained by setting

wi(p) =
1

d · p

[
1

d
−

((
1− i− 1

d

)k

−
(

1− i

d

)k
)]

with k ≥ 2 a positive integer. When k = 2, the weights coincide with those of the Gini

inequality index. As k grows, the index attributes increasing weight to the share of the most

under-represented groups at any average groups share p. Inequalities across ps contribute

uniformly to overall dissimilarity. In general, weights in W depend on p, thereby providing

enough flexibility for assigning different relevance to dissimilarities in groups proportions

occurring in correspondence of p-proportions of the average population. The family of
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indices Dw provides a representation of dissimilarity orderings consistent with axioms IEC,

ISC, I and E. Corollary 2 provides the rationale for using Dw as a more discriminatory

criterion for ranking configurations when 4∆ is not capable of concluding.

5 Dissimilarity and evaluations of unfair inequality: Evi-

dence from the Swedish education reform

Reducing unfair inequality is increasingly seen as the relevant social objective by experts

and policymakers alike. Unfair inequality amounts to the extent of inequality that is at-

tributable to circumstances of origin for which individuals cannot be held responsible for(for

a review, see Roemer and Trannoy 2016, Ferreira and Peragine 2016). The dissimilarity

criterion provides a useful tool to assess unfair inequality when a society consists of multiple

circumstance groups and when evaluations have to be robust with respect to the metric that

is used to define inequality, which can be measured in the space of incomes or for instance,

alternatively, in the space of utility evaluations of incomes(as in Andreoli et al. 2019).

We make use of the dissimilarity criterion to investigate the implications of a large

scale education reform on unfair income inequality in Sweden. The Swedish education

reform increased compulsory education duration, abolished streaming after grade six and

introduced a uniform national curriculum. The reform was gradually introduced across a

selected group of Swedish municipalities in 1949 until 1962. Afterwards, the reform was

gradually extended to the universe of municipalities.

The literature has focused on the average effects of the Swedish reform on earnings

(Meghir and Palme 2005, Fischer, Karlsson, Nilsson and Schwarz 2019), education (Holmlund

2008), mortality (Lager and Torssander 2012) and health (Meghir, Palme and Simeonova

2018). Educational interventions have been shown to generate a leveling-the-playing-field

effect on incomes across parental background groups (Andreoli et al. 2019). We investigate

the consequences of the Swedish reform for unfair inequality by comparing counterfactual

life-cycle earnings distributions under different policy regimes for a representative sample

of Swedish people born around the period of implementation of the policy. Meghir and

Palme (2005) provides an exhaustive description of the reform, the identification strategy

and the data that are also used in our policy evaluation exercise.
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mean sd min max N

Outcome variable
Life-cycle monthly earnings PPP (SEK) 1879.7 796.7 349.8 5239.8 22,644

Controls and treatment definition
Cohort 1953 (Post) 0.477 0.499 0 1 22,644
Treatment municipality (Treat) 0.828 0.378 0 1 22,644
Always treated municipality 0.212 0.409 0 1 22,644
Always control municipality 0.172 0.378 0 1 22,644
Reform indicator (Reform) 0.563 0.496 0 1 22,644

Circumstances
Female 0.469 0.499 0 1 22,644
Father education:

Primary 0.814 0.389 0 1 22,644
Vocational 0.079 0.271 0 1 22,644
Secondary 0.069 0.254 0 1 22,644
Higher 0.037 0.190 0 1 22,644

High ability 0.513 0.500 0 1 22,644
Urban 0.166 0.372 0 1 22,644

Table 1: Table of descriptives for the using sample

5.1 Data and estimation

The sample cosnidered covers about 10% of the Swedish population born in 1948 and 1953.9

The data consist of a balanced longitudinal sample of 22,644 boys and girls born in 1948

and 1953, for which income during adulthood is observed in 1985 through 1996, gathering

a total of 209,155 observations. As an outcome, we use life-cycle monthly earnings in SEK

at base year values. We obtain such estimates by averaging earnings observed at individual

level over the 1985-1996 period, when cohorts 1948 and 1953 were about 40 years old.

Summary statistics are reported in Table 1.

The cohort 1948 roughly corresponds to the group of individuals which were already

completing compulsory education in the early stages of the implementation of the reform

in 1962, and thus were likely experiencing the old compulsory education system in their

municipality of residence. The cohort 1953 gathers instead individuals who were entering

secondary education when the reform was already in place in most of Sweden. Table 1

shows that 47.7% of the sample is from the post-treatment cohort, whereas 82.2% of the

sample is from municipalities that were offering the reformed education system (defining

a treatment group) at some point. Not all municipalities adopted the reform at the same

time. In the sample, 21.2% of observations lived in municipalities that adopted the reform

early, whereas 17.2% of the sample lived in municipalities that never adopted the reformed

9Anonymized data are accessible online from the American Economic Association website.
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system. All other cases correspond to individuals who lived in municipalities that switched

towards the reformed education regime between cohort 1948 and 1953. We use these cases

to identify a counterfactual distribution of earnings that would have prevailed in the absence

of the reform.

Following Meghir and Palme (2005) and Holmlund (2008), identification rests on the

quasi-random assignment of the reform across municipalities that switch into the reformed

system over time. We identify such observations through a reform indictor R, which takes

value R = 1 for those that were either in municipalities that were early implementers

(hence always treated) irrespectively of the cohort of birth, or for those that were living in

switching municipalities but were born in post-reform cohorts. Table 1 shows that 56.3%

of the sample received the treatment (R = 1).

The differences between the distribution of earnings of those that received the treat-

ment (R = 1) compared to those that did not (R = 0) is informative of the policy effects

of the education reform, all else equal. We are interest in the distributional impacts of

the reform along the lines of circumstances of origin. We consider d = 32 mutually exclu-

sive circumstances groups denoted C = 1, . . . , 32, each gathering observations with similar

gender (two categories), father education (four categories), ability score collected while in

education (two categories) and being born in Stockholm, Gotheborg or Malmo (the urban

group, two categories). Our goal is to retrieve reliable estimates of the conditional distribu-

tions FC,R, and then use these estimates to compare dissimilarity in {FC,R=1}32
C=1 to that

in {FC,R=0}32
C=1.

We estimate conditional income distributions semi-parametrically using distributional

regressions (see for instance Foresi and Peracchi 1995, Firpo et al. 2009, Chernozhukov

et al. 2013). The underlying specification of the estimating model is:

FC,R(y) = Pr[Y ≤ y|C,R] = E[π(xθy)|C,R], (6)

where π is a binary choice model, x includes indicators for circumstance groups, an indicator

of the reform status, fixed effects by municipality and cohort and their interactions, whereas

θy is a vector of parameters. Estimates are conditional to a non-stochastic income threshold

y. We assume π(xθy) to be the linear probability model and we consider the following

specification of the outcome equation:

1[yicm ≤ y] = αy + xiβy + (γy + xiδy) ∗Ri + xcmφy + εicmy,
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(a) Matrix
−→
C . (b) Matrix

−→
T

(c)
−→
C∗ (black dots) (d)

−→
T∗ (black dots)

(e)
∑h

i=1
1

dpj

−→
c∗ (i)j (f)

∑h
i=1

1
dpj

−→
t∗ (i)j

Figure 3: Cumulative groups distributions and their transformations, for control (left pan-
els) and treatment (right panels) groups.

Note: Authors’ computations based on Meghir and Palme (2005) data. Groups formed by interacting

information on parents education, gender, ability and location. Gray curves in panel a) and b) are for

average groups distributions.

where yicm are permanent earnings of individual i from cohort c living in municipality m

at the moment of the reform, Ri is the reform indicator for i, xi includes indicators for 32
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mutually exclusive circumstances groups and xcm controls for fixed effects by cohort, munic-

ipality of birth, treatment group and for always treated municipalities. The estimates of γy

provide evidence of the average effects of the policy. Estimates of δy uncover evidence about

the distributional impacts of the policy across circumstance groups. Estimated coefficients

at income threshold y are collected in the vector θ̂y = (α̂y, β̂y, γ̂y, δ̂y, φ̂y).

We estimate the binary choice model over a finite grid of n = 100 reference values

y ∈ {y1, . . . , yn}, corresponding to the percentiles of the unconditional sample distribution

of lifetime earnings. Estimates of the model parameters in correspondence of the chosen

grid, {θ̂yj}nj=1, are then plugged into (6) to generate predictions of the conditional distri-

butions {F̂C,R(yj)}nj=1 at every step of the grid, for every group of circumstances C and

for every policy regime R. The obtained point estimates of the conditional distributions

can be linearly interpolated to obtain full estimates of the relevant cumulative distribution

functions. Predictions are organized into two 32× 100 matrices denoted respectively by T

for the treatment situation (i.e., when R = 1) and C for the control situation (i.e., when

R = 0). The elements of these matrices are thj := F̂C=h,R=1(yj) − F̂C=h,R=1(yj−1) and

chj := F̂C=h,R=0(yj) − F̂C=h,R=0(yj−1) for any h = 1, . . . , 32 and j = 1, . . . , 100, where it

is assumed that F̂C,R(y0) = 0. Estimates of the groups conditional distributions
−→
T and

−→
C are depicted in Figure 3, panel a) for the control group and panel b) for the treatment

group. Any difference between T and C should be attributed exclusively to the reform and

hence has a causal interpretation.

5.2 Results

We use matrices T and C to test the null hypothesis T 4∆ C, that is, that the Swedish

education reform has a causal impact in reducing unfair inequalities generated along the

lines of circumstances of origin. The matrices C and T display inequality in two dimensions:

first along the domain of realizations (captured by the position each units occupies on the

sample distribution of income); second, across circumstances of origin. Unfair inequality

originates from differences between the 32 groups at any realization.

Matrices T and C are not ordinal comparable. Testing for the dissimilarity criterion

4∆ requires first to identify ordinal comparable matrices T∗ and C∗ (using the algorithm

developed in Lemma 1) and then applying the test statistic ∆(h, pj) to these estimates.

Values of
−→
t ∗ij and −→c ∗ij , issued from T∗ and C∗, are reported in panels c) and d) in Figure

3. Each dot in the figure represents one of the 32 · 1, 263 = 40, 416 estimates drawn

from these matrices. In order to apply the ∆(h, pj) statistic, we estimate for every pj ,
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Figure 4: Empirical test for T 4∆ C.
Note: Authors’ computations based on Meghir and Palme (2005) data. Average population distributions

for matrices T∗ and C∗ are reported on the horizontal axis.

j = 1, . . . , 1236 the relative Lorenz curve coordinates of vectors
−→
t ∗j and −→c ∗j . These are

obtained by ordering entries in each vector from the smallest to the largest and then taking

the sequential sum of these estimates, namely computing for
−→
t ∗j the values 1

d·pj
∑h

i=1
−→
t ∗(i)j

for each h = 1, 2, ..., 32. The relative Lorenz curve coordinates are marked with small dots

in panels e) and f) of Figure 3 for treated and control groups. In the absence of dissimilarity

across cumulative distribution functions, dots in each panel should appear aligned along

parallel, equally-spaced horizontal lines, indicating lack of inequality in groups cumulative

proportions at any p. Such a configuration is clearly rejected by the data, revealing instead

that relative inequalities in groups composition are stronger at the bottom of the average

groups distribution than elsewhere, both in the treatment and control configurations. The

pattern of the relative Lorenz curve coordinates vary slightly across the two configurations,

with stronger evidence of inequality in group composition at the bottom of the population

distributions in the control configuration. The ∆(h, p) statistic is useful to represent the

direction and magnitude of such differences.

Values of the ∆(h, pj) statistic are reported in Figure 5.2. The statistic takes on positive

values almost everywhere. At the bottom of the average population distribution (for p <
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Figure 5: Comparing distributions by mean of S-Gini indices at selected proportions of the
average groups’ cdfs.
Note: Authors’ computations based on Meghir and Palme (2005) data. Average population distributions for

matrices T∗ and C∗ are reported on the horizontal axis. The figure reports the estimator for
∑32

i=1 wi
−→
t ∗(i)(p)

and
∑32

i=1 wi
−→c ∗(i)(p) for selected p ∈ [0, 1], where wi is the S-Gini weighting function (parametrized by

k = 1, . . . , 5).

0.4), the magnitude of the gaps is relatively large, reaching a peak of 0.2 on the unit

scale. Such an estimate originates from the pattern of Lorenz curves in Figure 3, where the

coordinates ranging between the 18th to 28th position are, at the bottom of the domain

p, at least 0.15 points larger (i.e. there is Lorenz dominance) in the treatment group

compared to the control group. Conversely, the effects of the reform have been modest

elsewhere. Violations of the empirical dissimilarity criterion are concentrated in the middle

of the average probability distribution, implying an ambiguous effect of the reform for unfair

inequality. Relative gaps are, nonetheless, small in size and possibly indistinguishable from

zero from a statistical perspective.

The data reject the conclusion that T 4∆ C. Dissimilarity indices are useful to quantify

the extent of inequality in groups cumulative distributions and to produce less partial eval-

uations that are consistent with the dissimilarity axiomatic model. Figure 5.2 reports the

levels of the S-Gini family of inequality indices of groups cumulative frequencies, measured

at any share of the average groups distributions, for the treatment (solid lines) and control
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groups (dashed lines). The parameter k expresses increasing aversion to the disproportional

composition of groups. The graph provides compelling evidence that dissimilarity in groups

distributions is smaller in the treatment setting compared to the control setting at any p,

being the solid line never above the dashed line across levels of k. After aggregating these

assessments into the dissimilarity index Dk (a specification of the index in (5) where the

weighting function w ∈ W is parametrized by the S-Gini weights), we find evidence that

the education reform has reduced dispersion across earnings profiles. In fact, the difference

Dk(T) − Dk(C), which takes values 0.228 − 0.273 for k = 2, 0.337 − 0.399 for k = 3,

0.399 − 0.473 for k = 4 and 0.439 − 0.521 for k = 5, is always negative for reasonable

selections of the inequality aversion parameter.

6 Concluding remarks

A large and sparse literature analyzing discrimination, mobility and unfair inequality has

brought about criteria for ranking multi-groups distributions of an ordered outcome ac-

cording to the dissimilarity they exhibit. This paper develops the normative underpinnings

of robust dissimilarity comparisons with ordinal outcomes. The main result of the pa-

per provides an empirical dissimilarity test which is capable of ranking configurations in a

way that guarantees unanimous agreement among all possible ways of valuing dissimilarity

consistently with a minimal set of relevant transformations.

The dissimilarity test that we invoke is not affected by the cardinality of the measure-

ment scale of the outcome. The model only requires outcomes to be ordered in a meaningful

and stable way. In fact, dissimilarity comparisons are concerned with inequalities between

groups distributions and not with the way outcomes are unequally distributed within each

group. This feature is of practical interest in cases where the underlying raw data have to be

transformed through monotone, but not necessarily linear, transformations, thus distorting

the cardinal interpretation attached to them.

We make use of the dissimilarity criterion to assess the distributional impact of the

Swedish education reform on income. The reform has affected the treatment group in

many complex ways, modifying the pattern of inequalities across individuals that differ

in gender, family background, skills and place of birth. Reasonably, none of the revealed

policy effects can be attributed to operations that intentionally exchange individuals across

outcomes levels, or interchange groups labels.

Nonetheless, these “elementary” transformations might still be regarded as obviously
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reducing unfair inequality. If the “complex” features of the education reform reshape the

students income opportunities in a way that is consistent with the existence of sequences

of more “elementary” transformations, then the policymaker can safely conclude that the

unfair inequality reduction objective has been attained. The dissimilarity criterion informs

the policymaker that such a sequence of “elementary” transformations exists and is finite,

thereby implying that every admissible evaluation of dissimilarity that is consistent with the

implications of such transformations will also agree about the effect of the policy. Routines

are made available to facilitate this task.

In our application, we are forced to reject that the Swedish reform reduces unfair in-

equalities, even if we find strong evidence in the direction of equalization at the bottom

and at the top of the average distribution. Violations of the test mostly occur at the center

of the distribution. When aggregating evaluations by mean of dissimilarity indices, we are

bound to conclude that such violations are of lesser importance and overall, we find evi-

dence that the reform has reduced dissimilarity for a large number of dissimilarity indices

consistent with the axioms.

The results developed in this paper provide a complete characterization of dissimilar-

ity through equivalent, yet separate, perspectives about dissimilarity, echoing results in

the famous Hardy, Littlewood and Polya (1934) theorem for inequality analysis (see also

Marshall et al. 2011, Andreoli and Zoli 2020). We show that the possibility of transforming

a configuration A into B resorting exclusively to dissimilarity-preserving and -reducing op-

erations generates agreement in ranking B 4 A among all orderings consistent with these

transformations (statements (i) and (ii), Theorem 1), and in particular within the family

of dissimilarity indices ranking Dw(B) ≤ Dw(A) irrespectively of the choice of the weight-

ing scheme w (statement (ii) in Corollary 2). Agreement can be empirically verified with

the implementable dissimilarity test B 4∆ A (statement (iii) in Theorem 1), which can be

readily visualized as a comparison of dispersion among cumulative group distributions −→a (p)

and
−→
b (p) (Claim (ii) in Corollary 1). Such a criterion provides an intuitive multi-group

extension of the criterion (1) discussed in the Introduction.
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A Proofs

A.1 Preliminary results

An algorith to obtain ordinal comparable matrices. Recall that a pair of distribu-

tion matrices A,B ∈ Md are said to be ordinal comparable whenever i) nA = nB = n and

1t
dA = 1t

dB; ii) all groups are ordered according to stochastic dominance in A and B, that

is ∀i, h either −→a ij ≤ −→a hj or −→a hj ≤ −→a ij for all j = 1, . . . , nA, and ∀i′, h′ either
−→
b i′j ≤

−→
b h′j

or
−→
b h′j ≤

−→
b i′j for all j = 1, . . . , nB; iii) the order of the groups is the same in A and B,

that is, if −→a ij ≤ −→a hj then
−→
b ij ≤

−→
b hj for all groups i 6= h and for all classes j.

Our first Lemma shows that the dissimilarity preserving operations allow to map any

pair of distribution matrices A,B ∈ Md into ordinal comparable matrices A∗,B∗ ∈ Md.

Such matrices are ranked A ∼ A∗ and B ∼ B∗ by all dissimilarity orderings consistent with

axioms IEC, ISC and I. The proof of the next result offers an algorithm through which any

pair of distribution matrices can be transformed into a pair of ordinal comparable matrices.

Lemma 1 For any A,B ∈ Md there exist A∗,B∗ ∈ Md ordinal comparable that are ob-

tained from A and B respectively through operations of split of classes, insertion/elimination

of empty classes and interchange of groups transformations.

Proof We sketch an algorithm for transforming matrix A into A∗. The same algorithm

can be applied to B in order to obtain B∗. Our procedure starts from the representation

of the dissimilarity criterion based on the distribution functions −→a (p) and
−→
b (p).

Denote with p a realization of −→a (p), so that p : = −→a (p) where p = 1
d1t

d ·p. We consider

two sets, denoted S1 and S2, whose elements are proportions pj of average cumulative group

distributions obtained from A and from the transformed matrix A∗. (I) We define the first

set as S1 := {pj : pj = 1
d1t

d ·
−→a j , j = 1, . . . , nA} with nA denoting the number of classes of

A.

(II) To identify the second set we consider all the shares p and thus the corresponding

vectors p : = −→a (p) where it occurs a re-ranking of the proportions of the groups across

A’s classes. We illustrate here the procedure to derive these shares associated with the

re-ranking involving two groups. Define the indices j = 1, . . . , ncA associated with points pj

that are comonotonic, i.e., such that for every group i, the element pij of pj is ordered with

respect to any other element pi′j of pj with i 6= i′, in the same way as the element pij+1 of

pj+1. That is, such that pij ≥ pi′j → pij+1 ≥ pi′j+1 for all i, i′ ∈ {1, 2, . . . , d}. To identify
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this set, start with j = 1 and set p1 = −→a 1. In order to identify j = 2, solve the following:

p2 := arg max
p

{
1t
d · p : p = −→a (

1

d
1t
d · p), 1t

d · p > 1t
d · p1, p is comonotonic to p1

}
.

If all group distributions are ordered in matrix A and there does not exist a pair of groups

i, i′ where (strict) re-ranking occurs, then p2 = −→a nA = 1d and ncA = 2. Else, if −→a (pj)

and −→a (pj+1) are not comonotonic, then p2 identifies the smallest proportion δ ∈ [0, 1] such

that −→a (pj) and δ−→a (pj) + (1 − δ)−→a (pj+1) are comonotonic. Once δ is identified, then the

corresponding vector of proportions is given by p2 = δ−→a (pj) + (1 − δ)−→a (pj+1), which is

such that 1 > 1t
d · p2 > 1t

d · p1. We can then reiterate the procedure to derive p3, setting

p2 as the reference.

Recursively, step j of the algorithm yields:

pj = arg max
p

{
1t
d · p : p = −→a (

1

d
1t
d · p), 1t

d · p > 1t
d · pj−1, p is comonotonic to pj−1

}
,

with the sequence ending after a finite number ncA of steps. The set of associated proportions

of the average distribution across groups is denoted S2 := {pj : pj = 1
d1t

d · pj , j =

1, . . . , ncA}.

Consider now the union of the sets derived in cases (I) and (II), giving SA = S1 ∪

S2 := {pj : j = 1, . . . , n∗A}, where proportions are ordered such that pj < pj+1 ∀j and

nA ≤ n∗A ≤ nA + ncA.

An analogous procedure identifies a set of proportions SB := {pj : j = 1, . . . , n∗B}.

The union of the sets SA and SB is denoted S = SA ∪ SB := {pj : j = 1, . . . , n∗} where

proportions are ordered such that pj < pj+1 ∀j, with max{n∗A, n∗B} ≤ n∗ ≤ n∗A + n∗B − 1,

p1 = 1
d min{a1, b1} and pn∗ = 1.

The sequence of indices j = 1, . . . , n∗ and the associated pj ’s yield the partition in n∗

classes of the two ordinal comparable matrices A∗ and B∗ obtained from A and B. We

show that such matrices are obtained using exclusively dissimilarity preserving operations.

Consider first matrix A. Note that for every pj ∈ S there exists a pA
j = −→a (1

d1t
d · pA

j )

such that pj = 1
d1t

d · pA
j . The vector pA

j can be obtained from the vectors associated with

the classes of A through splits and elimination/insertion of empty classes. First, consider

deleting all empty classes from A. In what follows we assume that A has no empty classes.

Let SA1 denote the set S1 computed for matrix A. By construction we have that all

pj ∈ SA1 coincide with 1
d1t

d ·
−→a h for h = 1, . . . , nA. We obtain therefore a first set of vectors

pA
j that coincide with the vectors −→a h for h = 1, . . . , nA. We focus then on the pj ’s in S
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that do not belong to SA1 , that is, those in S\SA1 .

For any pj ∈ S\SA1 , let k ∈ {1, . . . , nA} be the index of a class of A such that 1
d1t

d ·
−→a k <

pj <
1
d1t

d ·
−→a k+1, then it can be re-written as pA

j = −→a k + λak+1, which is a specific set

of coordinates of −→a (p). In this case, λ ∈ (0, 1) can be interpreted as a split parameter.

Iterating such procedure for every pj ∈ S\SA1 , yields a sequence of split operations.

The sequence of vectors pA
1 , . . . ,p

A
n∗ computed for all the pj ∈ S displays comonotonic

elements, in the sense that ∀pj , pj+1 ∈ S, −→a (pj) and −→a (pj+1) are comonotonic. However,

it is possible that ∃j such that pA
j is not comonotonic with pA

j+k for k ≥ 2. Define, hence,

a sequence of vectors zA1 , . . . , z
A
n∗ obtained by independently permuting the elements of

each vector in pA
1 , . . . ,p

A
n∗ so that all these vectors become comonotonic to pA

1 . Obtain

zA1 = pA
1 , and zA2 = pA

2 by construction, and derive a set of permutation matrices Πj
d ∈ Pd

so that zA3 = Π3
d · pA

3 is comonotonic with zA2 (and also with zA1 ), zA4 = Π4
d · Π3

d · pA
4 is

comonotonic with zA3 (and therefore also with zA2 and zA1 ), and so on, so that in general

zAj = (Πj
d ·Π

j−1
d · . . . ·Π3

d) · pA
j is comonotonic with zAj−1, . . . , z

A
1 for j = 1, . . . , n∗.

Define the matrix
−→
A∗ := (zA1 , . . . , z

A
n∗), that by construction of the vectors zAj satisfies

the properties of a cumulative distribution matrix. The underlying distribution matrix is

denoted A∗ := (∆zA1 , . . . ,∆zAn∗) where ∆zAj := zAj −zAj−1 ≥ 0d with zA0 := 0d. The definition

of A∗ clarifies that the group permutations mapping vectors pA
j into zAj can be associated

with a sequence of interchange of groups transformations applied to A∗. According to the

definition of Axiom I, in fact, one can construct the sequence of the interchanges of groups

permutation matrices by considering the matrices (Πj
d ·Π

j−1
d ·. . .·Π3

d) for j = 3, 4, . . . , n∗−1

where each generic matrix Πj
d that involves permutations of more than two groups could be

decomposed itself into a sequence of matrices involving only permutations of two groups.

Define in a similar way the sequence zB1 , . . . , z
B
n∗ and the matrix B∗ := (∆zB1 , . . . ,∆zBn∗).

By construction A∗ and B∗ satisfy (i) nA∗ = nB∗ = n∗ and 1t
d ·A∗ = 1t

d ·B∗; (ii) the group

distributions in matrix A∗ and in matrix B∗ are ordered by stochastic dominance, and (iii)

the order of the groups coincides in both matrices up to an independent permutations of the

rows of the matrices. We conclude that A∗ and B∗ are ordinal comparable matrices obtained

from A and B respectively through operations of split of classes, insertion/elimination of

empty classes and interchange of groups transformations.

Q.E.D.

An algorithm showing the relation between exchange operations and the dis-

similarity criterion for ordinal comparable matrices. We develop a rank-preserving
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version of Tchen’s (1980) algorithm to show that the sequential majorization condition in

statement (iii) in Theorem 1 is always supported by the existence of a finite sequence of

exchange transformations mapping the distribution matrix A into the less dissimilar one

B as claimed in statement (i) of the theorem. The algorithm applies to ordinal comparable

matrices, a subset of the matrices with fixed marginals analyzed in Tchen (1980). As a

consequence, Tchen’s algorithm is not appropriate in our setting because it does not guar-

antee that the rank of the groups is preserved at every step of the algorithm, implying that

conditions (ii) and (iii) of Definition 1 might be violated by Tchen’s algorithm.

Additional notation. We focus here on ordinal comparable matrices where the order of

the groups coincides with the one of the rows, so that group i dominates according to first

order stochastic dominance group i − 1, for any i. That is, for A ∈ Md, −→a ij ≤ −→a i−1 j ,

∀i, j. Moreover, let (x, y) identify the cell corresponding to row x and column y of a

distribution matrix, with x ∈ {1, . . . , d} and y ∈ {1, . . . , n}. The lexicographic order on

{1, . . . , d}×{1, . . . , n} that we consider is denoted by (x, y) < (x′, y′) and is obtained either if

y < y′ or if y = y′ and x > x′. We also use i ∈ [x, x′] to denote i ∈ {x, . . . , x′ : x < . . . < x′}.

We will say that the vector of cumulative groups shares
−→
b j corresponding to class j Lorenz

dominates −→a j whenever
∑h

i=1

−→
b ij ≥

∑h
i=1
−→a ij for every h, a condition which builds on

the fact that entries in
−→
b j and in −→a j are ordered in increasing magnitude and

−→
b j and in

−→a j have the same average.

Denote the doubly cumulative distribution matrix of A by
−→−→
A, with

−→−→a ij =
∑

x≥i
−→a xj .

Using this compact notation, the Lorenz dominance condition applied to every class j

rewrites equivalently as
−→−→
B ≥

−→−→
A.

Strategy of the proof. The algorithm is built in two steps that are illustrated respec-

tively in Lemma 2 and Lemma 3. The first step of the algorithm delimits the building blocks

of the analysis by developing a rank-preserving version of Tchen’s algorithm (see Theorem

1 in Tchen 1980), from where the notation is taken. Given two ordinal comparable matrices

H, H′ ∈Md with two elements hij and h′ij satisfying hij < h′ij , and such that
−→−→
H ≤

−→−→
H′ and

−→−→
h xy =

−→−→
h′xy for all (x, y) < (i, j), Lemma 2 will identify the sequence of transfers of groups

population masses that, when applied to H, leads to matrix H′ by leveling the difference

h′ij−hij in cell (i, j). This result is achieved through a finite sequence of M steps. Each step

identifies a matrix Km with m ∈ {1, . . . ,M}, where
−→−→
H ≤

−→−→
Km ≤

−→−→
Km+1 ≤

−→−→
H′ with element

kmij such that hij < kmij ≤ h′ij . Lemma 2 guarantees that every matrix Km is transformed
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into Km+1 through a finite sequence S of transfers of equal magnitude that delimits a chain

of exchange transformations. The construction of the algorithm guarantees that the rank

of the groups is always preserved throughout the sequence reducing the quantity h′ij − hij .

Given two ordinal comparable distribution matrices A,B ∈Md such that
−→−→
A ≤

−→−→
B , the

second step of the algorithm develops the sequences of transfers of groups masses trans-

forming A into B in a way that preserves, at each step of the sequence, the ranking of the

groups. The first sequence, indexed by q ∈ {1, . . . , Q}, identifies the cells of A that have

to be transformed into the corresponding cells of B. The sequence starts in q = 1 with

cell (d, 1) and moves according to the lexicographic order, from any cell (i, j) to (i − 1, j)

if i > 2 or to (d, j + 1) if i = 2, and so on.10 At each step q of the sequence the gap

bij − aij in (i, j) has to be eliminated before moving to step q+ 1. In order to preserve the

rank of the groups in class j, however, groups i − 1, i − 2, ... should remain dominated by

i when shifting from Aq to Aq+1. The transformations that guarantee this no-reranking

condition should sequentially transfer mass to groups i− 1, i− 2, ... before affecting group

i in class j. This subsequence is indexed by p ∈ {1, . . . , P}. The two sequences together

induce transfers that are bounded and guarantee that:

−→−→
A ≤ . . . ≤

−→−→
Aq =

−→−→
Aq,1 ≤ . . . ≤

−→−→
Aq,p ≤

−→−→
Aq,p+1 ≤ . . . ≤

−→−→
Aq,P =

−→−→
Aq+1 ≤ . . . ≤

−→−→
B .

By construction, P is finite. In fact, the matrices Aq,p and Aq,p+1 can be considered as H

and H′ in the first step of the algorithm. Thus, Aq,p+1 is obtained from Aq,p exclusively

through a finite sequence of exchange operations. Extending this reasoning, also B is

obtained from A exclusively through a finite sequence of exchange operations, which will

prove Lemma 3.

First step of the algorithm. For any pair H,H′ ∈Md of ordinal comparable matrices

with hij < h′ij ,
−→−→
H ≤

−→−→
H′ and

−→−→
h xy =

−→−→
h′xy for all (x, y) < (i, j), consider the sequence of

matrices Km with m ∈ {1, . . . ,M} where K1 = H. Let K and K′ denote two consecutive

matrices in this sequence. Lemma 1.1 in Tchen (1980) identifies the operations mapping

K into K′ ∈ Md that preserve the monotonicity of K (i.e., that guarantee that
−→
k ′ij ≤

−→
k ′ij+1, ∀i, j). These transformations can be represented by a subsequence of matrices Ks

with s ∈ {1, . . . , S} leading to K′ from K. We present a version of this subsequence that is

also rank-preserving (i.e., that guarantees that
−→
k ′ij ≥

−→
k ′i+1 j ,∀i, j).

10This is so because, by ordinal comparability, a1j and b1j are determined by the remaining d−1 elements
of aj and bj .

36



We first show that the subsequence of matrices Ks exists, is finite and is related to

exchange operations. For a given cell (i, j), set a row i∗ such that i∗ < i and ki∗j > 0, and

consider K satisfying the following conditions:

kij < h′ij and
−→−→
k xy =

−→−→
h′xy for all (x, y) < (i, j), (7)

δ = min

{
−→
k i−1 j −

−→
k ij ,
−→
k i∗j −

−→
k i∗+1 j ,

1

2
(
−→
k i∗j −

−→
k ij)

}
> 0. (8)

Condition (7) is as in Tchen (1980), while condition (8) is new. It secures that there is

enough mass that can be moved from cell (i∗, j) and added to (i, j) so that the rank of

the groups is preserved. Given K, define the sequence S(K,H′|i∗) := (xs, ys)s∈{1,...,S} by

setting

x1 = i

y1 = min {c|c ≥ j + 1, kic > 0}

xs = max {r|i∗ < r < i, krc > 0 for some j < c < ys−1}

ys = min {c|c ≥ j + 1, kxsc > 0}

if s < S, while (xS , yS) = (i∗, j). This sequence is nonempty with xS = i∗ < xS−1 < . . . <

x1 = i and y1 > y2 > . . . > yS = j, and leads to K′.

Define K1 = K and Ks as the distribution matrix obtained from Ks−1 where at most a

mass ∆ > 0 is subtracted from (i, ys−1) and (xs, ys) and added to (xs, ys−1) and (i, ys). The

mass ∆ that can be moved should coincide with the smallest quantity between (i) h′ij − kij

(the gap that should be reduced), (ii) the frequency of group xs in class ys (this guarantees

the monotonicity), (iii) the gap between the cumulative distributions of group i and group

i − 1, and (iv) the gap between group xs and group xs + 1. These two latter conditions

guarantee that the rank of the groups is preserved by the transfer. When xs = i − 1, at

most half of the gap
−→
k xsj −

−→
k ij can be transferred. By construction of the sequence, at

every step s, kxsy = 0 ∀xs and ∀y ∈ [ys, ys−1−1]. Thus, conditions (iii) and (iv) are always

satisfied when (8) holds. Altogether these conditions give:

∆ := min

{
h′ij − kij , min

S(K,H′|i∗)
{ksxs,ys}, δ

}
. (9)

Lemma 2 Let K satisfy conditions (7) and (8), there exists K′ ∈ Md obtained from K

through a sequence of exchanges, such that
−→−→
K′ ≤

−→−→
H′ and k′ij = kij + ∆, with ∆ > 0 as in
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(9).

Proof Consider S(K,H′|i∗) defined as above and let K1 = K. For s = 1 a mass ∆ is

subtracted from (i, y1) and (x2, y2) and added to (i, y2) and (x2, y1), thereby representing

an exchange transformation. In fact, by definition (9), this quantity must be lower than kiy1

and kx2y2 , which guarantees that
−→
k iy1 −∆ ≥ 0 and

−→
k x2y2 −∆ ≥

−→
k x2+1 y2 . This operation

leads to K2. Then, a mass ∆ is subtracted from (i, y2) and (x3, y3) and added to (i, y3) and

(x3, y2) giving K3. By (9), also this operation is supported by an exchange transformation.

The last step of this sequence involves moving mass from (i∗, j) to (i, j) where ki∗j > 0 by

definition. Recall that i ≥ 2, hence i∗ always exists. To show that
−→−→
Ks ≤

−→−→
H′ for any s,

assume by recurrence that
−→−→
Ks−1 ≤

−→−→
H′. For (x, y) < (i, ys), k

s
xy = ks−1

xy . By definition, ∆ is

such that the order of groups i and i− 1 is preserved, hence ksiys > ks−1
iys

and
−→−→
k s

iys
>
−→−→
k s−1

iys

while
−→−→
k s

iys
<
−→−→
k s

i−1 ys
. Moreover, ksxy = ks−1

xy for x ∈ [xs + 1, i− 1] and y ∈ [ys, ys−1], hence
−→−→
k s

xy >
−→−→
k s+1

xy . Finally, ksxsys < ks−1
xsys and

−→−→
k s

xsys =
−→−→
k s−1

xsys , as well as
−→−→
k s

xys−1
=
−→−→
k s−1

xys−1
for

x ∈ [xs, i]. Combining these conditions, the required result is obtained. Q.E.D.

Under (7) and (8), the iteration of the sequence S(K,H′|i∗) in Lemma 2 might lead to

three alternative outcomes. (i) The iteration might identify a transfer ∆ = h′ij − kij such

that k′ij = h′ij , in which case K′ = KM = H′ and the sequence is completed. Alternatively

∆ < h′ij − kij , then K′ 6= H′ and Lemma 2 must be reiterated. (ii) In this case, if

δ > h′ij − kij the rank-preserving constraints are not binding, so that ∆ = kxs ys , where

(xs, ys) ∈ S(K,H′∗). If the condition holds starting from K = K1 = H, then it should also

hold in all the following steps, since it indicates that there is enough mass in cell (i∗, j)

to level the difference h′ij − hij and preserve the groups rankings. Lemma 2 introduces

the sequence S(K1,H′∗) leading to K2. A second iteration of the lemma would give the

sequence S(K2,H′∗) leading to K3, and so on. Repeated iterations of the lemma lead to

a sequence of distribution matrices Km, m ∈ {1, . . . ,M} where h′ij − k
m+1
ij < h′ij − kmij .

Each of these matrices is supported by a sequence S(Km,H′∗) so that if ∆ = kmxsys for

some (xs, ys) ∈ S(Km,H′∗), then S(Km+1,H′∗) must contain all the points of S(Km,H′∗)

except from (xs, ys). Hence the former develops on a larger set of cells than the latter.

The sequence finally converges to kMij = h′ij given that S(Km,H′∗) is a strictly increasing

sequence on a finite range, indicating that it is always possible to move from K to H′ in a

finite number M of steps.

Finally, (iii) if instead δ < h′ij − kij the iteration of Lemma 2 does not guarantee that

H′ is reached, because the rank-preserving constraint becomes binding at some point. This
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can be avoided by suitably redefining i∗. Next result in Lemma 3, presented in the second

step of the main algorithm, will show how to iteratively construct matrices H and H′ where

either situation (i) or (ii), but not (iii), can occur.

Second step of the algorithm. The goal of the second step is to develop a sequence

of rank-preserving transfers of groups masses mapping A into B whenever
−→−→
B ≥

−→−→
A. Every

transfer of mass is constructed in such a way that Lemma 2 always applies. Thus, each

transfer breaks down into a finite number of exchange transformations.

Lemma 3 For A,B ∈ Md satisfying ordinal comparability, (i) B is obtained from A

through a finite sequence of exchange transformations if and only if (ii)
−→−→
B ≥

−→−→
A.

Proof (i) ⇒ (ii). Suppose that B is obtained from A by an exchange transformation

involving classes k and k′ > k. Then, there exists ε > 0 such that
−→
b hj = −→a hj + ε and

−→
b `j = −→a `j − ε with

−→
b ij = −→a ij for all groups i 6= h, ` and for all classes j such that

k ≤ j < k′, while
−→
b j = −→a j for all the other classes. Consider first k′ = k + 1. If h = `+ 1

then ε ≤ 1
2(−→a `k −−→a `+1 k). If h > `+ 1 then ε ≤ min {(−→a `k −−→a `+1 k), (−→a h−1 k −−→a hk)}.

These conditions define a rank-preserving progressive transfer (RPPT) applied in the space

of cumulative groups frequencies. If k′ > k + 1, the exchange transformation originates

a sequence of RPPT εj across classes k ≤ j < k′. Setting ε = minj{εj} guarantees that
−→
b j is obtained from −→a j though a RPPT, ∀j = k, . . . , k′ − 1. Every RPPT induces Lorenz

dominance (Fields and Fei 1978), hence (ii) holds.

(ii) ⇒ (i). Let
−→−→
B ≥

−→−→
A. For a given (i, j) consider a matrix Aq ∈ Md that is ordinal

comparable to A, with q ∈ {1, . . . , Q} where A1 = A and
−→−→
Aq ≤

−→−→
B such that

−→−→a q
xy =

−→−→
b xy

for all (x, y) < (i, j) and aqij < bij . The sequence indexed by q identifies cells of A. We

now develop a sequence of transformations that guarantees to obtain Aq+1 ∈Md from Aq

satisfying
−→−→
A ≤

−→−→
Aq+1 ≤

−→−→
B ,
−→−→a q+1

xy =
−→−→
b xy for all (x, y) < (i, j) and aq+1

ij = bij . There are

two distinct cases where different sequences of transformations apply.

Case (a). For any class j, denote i∗ = max{r|r < i, aqrj > 0, −→a q
rj >

−→a q
ij}, which

defines an interval [i∗ + 1, i]. Consider the case where −→a q
xj = −→a q

ij for all x ∈ [i∗ + 1, i].

To avoid the re-rankings of the groups in [i∗ + 1, i], consider adding recursively mass to

groups in class j starting from the group in position i∗ + 1 and sequentially moving to

the group in position i. The whole procedure defines a subsequence p ∈ {1, . . . , P} of

transformations of Aq, denoted Aq,p with Aq,1 = Aq, where Aq,2 is obtained only by

letting −→a q,2
i∗+1 j = −→a q,1

i∗+1 j + ∆ij(i
∗) and −→a q,2

i∗j = −→a q,1
i∗j −∆ij(i

∗), then Aq,3 is obtained only
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by letting −→a q,3
i∗+2 j = −→a q,2

i∗+1 j and −→a q,3
i∗j = −→a q,1

i∗j − 2∆ij(i
∗), and for a general p the matrix

Aq,p is obtained only by letting −→a q,p
i∗+p−1 j = −→a q,p−1

i∗+p−2 j and −→a q,p
i∗j = −→a q,1

i∗j − (p − 1)∆ij(i
∗)

until p reaches i− i∗ + 1, where

∆ij(i
∗) := min

{
−→
b ij −−→a q

ij ,
1

i− i∗ + 1

(−→a q
i∗j −

−→a q
ij

)}
. (10)

The sequence then has reached cell (i, j), giving by construction
−→−→
Aq,1 ≤

−→−→
Aq,p−1 ≤

−→−→
Aq,p ≤

−→−→
B . If −→a q,p

ij =
−→
b ij , the sequence is completed and p = P . Otherwise we have

−→a q,1
i∗j − (i − i∗)∆ij(i

∗) = −→a q,p
i∗+1 j = . . . = −→a q,p

ij <
−→
b ij . In this case then reset i∗′ < i∗

and reiterate the sequence of transfers of mass ∆ij(i
∗′). The index of the sequence moves

further to p+ 1 where Aq,p+1 is obtained only by letting −→a q,p+1
i∗′+1 j = −→a q,p

i∗′+1 j + ∆ij(i
∗′) and

−→a q,p+1
i∗′j = −→a q,p

i∗′j − ∆ij(i
∗′) which gives

−→−→
Aq,p ≤

−→−→
Aq,p+1, and so on. By construction, this

sequence develops on a finite number P of steps leading to −→a q,P
ij =

−→
b ij .

Case (b). Alternatively, there exist (at least one) groups in the interval [i∗ + 1, i] that

have no mass in class j, but their cumulative distributions differ from the one of group

i. Define ĩ := max{r|r ∈ [i∗ + 1, i], −→a q
rj >

−→a q
ij , a

q
rj = 0}. The group occupying position

ĩ delimits the interval [̃i + 1, i] with ĩ + 1 ≤ i. To avoid re-rankings, consider adding

recursively mass in class j to the groups in [̃i + 1, i], starting from the group occupying

position ĩ + 1 and sequentially moving to the group in position i. In a finite number of

iterations, these transfers can either compensate the gap
−→
b ij−−→a q

ij , thus leading to Aq+1, or

increase groups masses in class j until the cumulative distributions of the groups in [̃i+1, i]

end up coinciding with the one of group ĩ. The whole procedure defines a subsequence

p ∈ {1, . . . , P} of transformations of Aq, denoted Aq,p with Aq,1 = Aq, where Aq,2 is

obtained only by letting −→a q,2

ĩ+1 j
= −→a q,1

ĩ+1 j
+ ∆ij(i

∗, ĩ) and −→a q,2
i∗j = −→a q,1

i∗j − ∆ij(i
∗, ĩ), and

for a generic step p the matrix Aq,p is obtained only by letting −→a q,p

ĩ+p−1 j
= −→a q,p−1

ĩ+p−2 j
and

−→a q,p
i∗j = −→a q,1

i∗j − (p− 1)∆ij(i
∗, ĩ) until p reaches i− ĩ+ 1, where

∆ij(i
∗, ĩ) := min

{
−→
b ij −−→a q

ij ,
−→a q

ĩj
−−→a q

ĩ+1 j
,

1

i− ĩ

(−→a q
i∗j −

−→a q
i∗+1 j

)}
. (11)

The second and the third quantities in ∆ij(i
∗, ĩ) define the rank-preserving constraints of

groups i∗ and ĩ. The sequence then has reached cell (i, j), giving by construction that
−→−→
Aq,1 ≤

−→−→
Aq,p−1 ≤

−→−→
Aq,p ≤

−→−→
B . If −→a q,p

ij =
−→
b ij , the sequence is completed and p = P .
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Otherwise, at least one of the following constraints is binding:

−→a q,p

ĩj
= −→a q,p

ĩ+1 j
= . . . = −→a q,p

ij <
−→
b ij , (12)

−→a q,p
i∗j − (i− ĩ)∆ij(i

∗, ĩ) = −→a q,p
i∗+1 j . (13)

If (12) holds but (13) does not hold, then the rank-preserving constraint for group ĩ is

binding. In this case, the algorithm proceeds by resetting ĩ to ĩ′ ∈ [i∗, ĩ− 1]. The sequence

updates to p + 1 and generates a new matrix Aq,p+1. If ĩ′ > i∗, the sequence continues

following the procedure outlined above, using transfers of mass ∆ij(i
∗, ĩ′) defined in (11), to

obtain Aq,p+1 only by letting −→a q,p+1

ĩ′+1 j
= −→a q,p

ĩ′+1 j
+ ∆ij(i

∗, ĩ′) and −→a q,p+1
i∗j = −→a q,p

i∗j−∆ij(i
∗, ĩ′),

and so on. Otherwise, if ĩ′ = i∗ then the sequence proceeds as in Case (a) using the transfers

of mass ∆ij (̃i
′) in (10) to obtain Aq,p+1 only by letting −→a q,p+1

ĩ′+1 j
= −→a q,p

ĩ′+1 j
+ ∆ij (̃i

′) and

−→a q,p+1

ĩ′j
= −→a q,p

ĩ′j
−∆ij (̃i

′). If, instead, (13) holds but (12) does not hold, i.e. −→a q,p

ĩj
> −→a q,p

ĩ+1 j
,

then reset i∗ to i∗′ < i∗ and iterate again the sequence outlined above on the interval [̃i+1, i]

while setting the feasible transfer to ∆ij(i
∗′, ĩ). Finally, if both constraints are binding, both

i∗ and ĩ must be reset and the algorithm is iterated. In all these situations, the order of

transfers gives that
−→−→
Aq,p+1 ≥

−→−→
Aq,p by construction.

We now motivate that any given step of the algorithm leading from Aq,p to Aq,p+1 can

be decomposed into a finite sequence of exchange transformations, so that P must be finite

as well. For any given Aq,p associated with cell (i, j), the step p identifies a cell (x, j) where

aq,p+1
xj = aq,pxj + ∆, where ∆ is defined either by (10) or by (11), depending on the prevailing

case. Set Aq,p = H, denote with H′ a matrix such that
−→−→
h′ zy =

−→−→a q,p
zy for all (z, y) < (x, j)

and h′xj := aq,p+1
xj > aq,pxj . Thus H and H′ satisfy condition (7). The two matrices also

satisfy condition (8) as a consequence of the transfers identified in the three cases outlined

above. Furthermore h′xj is defined such that, given i∗, the rank-preserving constraint is

never binding, i.e., δ > aq,p+1
xj − aq,pxj . The conditions in Lemma 2 apply, indicating that

there exists a finite sequence m ∈ {1, . . . ,M} with K1 = H = Aq,p and with M finite, such

that
−→−→
k M

zy =
−→−→a q,p

zy for all (z, y) < (x, j) and kMxj = aq,p+1
xj , thereby giving KM = H′. It is

now sufficient to set Aq,p+1 = KM to be sure that Aq,p+1 is obtained from Aq,p through a

finite sequence of exchange transformations. So it is every step of the sequence {1, . . . , P},

through which we conclude that P must be finite as well, and that Aq+1 = Aq,P with

aq+1
ij = bij is obtained from Aq only through exchange transformations.

The proof of the lemma follows by iterating the algorithm outlined above, based on

Lemma 2. First set A1 = A and (i, j) = (d, 1) to obtain A1,P where the sequence of
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transformations grants
−→−→
A1,P ≤

−→−→
B and a1,P

d1 = bd1; then set A2 = A1,P and (i, j) = (d−1, 1)

to obtain A2,P with
−→−→
A2,P ≤

−→−→
B , a2,P

d1 = bd1 and a2,P
d−1 1 = bd−1 1; and so on. Q.E.D.

A.2 Proof of Theorem 1.

Proof It is shown that (i)⇒ (ii)⇒ (iii)⇒ (i).

(i) ⇒ (ii). Given A and B, consider using insertion of empty classes, split of classes

and interchange to obtain a pair of ordinal comparable matrices A∗ and B∗. According

to Lemma 1, the two matrices always exist and are ranked A ∼ A∗ and B ∼ B∗ by all

orderings that are consistent with axioms ISC, IEC and I. Obtain now B∗ making use of

exchange transformations that map A∗ into B∗. Consequently, B∗ 4 A∗ by all orderings

satisfying ISC, IEC, I and E. The intersection of these orderings gives rise to a transitive

partial order ranking B ∼ B∗ 4 A∗ ∼ A, which is B 4 A as in (ii).

(ii) ⇒ (iii). If (ii) holds, then there exist ordinal comparable matrices A∗ and B∗

obtained from A and B respectively, through split of classes, insertion/elimination of empty

classes and interchanges that are ranked B∗ 4 A∗ by all orderings consistent with axiom E.

Consider a representation of such orderings based on indices
∑n∗

j=1

∑d
i=1wij

−→a ∗(i)j where wij

is a weighting scheme so that wij ≤ wi+1j ∀i, j. To see that such representation is consistent

with axiom E, consider A∗ and an exchange operation that moves ε from group ` to h with

` > h involving adjacent classes j and j + 1 of matrix A∗. The net effect of the operation

on measured dissimilarity is (whj − w`j)ε ≤ 0 since whj ≤ w`j for all j, implying that the

measured dissimilarity always decreases by effect of an exchange operation. If (ii) holds,

then every measure such as
∑n∗

j=1

∑d
i=1wij

−→a ∗(i)j for any weighting scheme wij such that

wij ≤ wi+1j ∀i, j ranks B∗ at most as much dissimilar as A∗, whatever the choice of the two

ordinally comparable matrices. In particular, this holds when
∑d

i=1wij = 0 and wik = 0 for

any k 6= j and for any i. Hence, according to this latter weighting functions comparisons

should be made for each class j. That is,
∑d

i=1wij
−→
b ∗(i)j ≤

∑d
i=1wij

−→a ∗(i)j for all j should

hold, or equivalently:
∑d

i=1 (1− wij)
−→
b ∗(i)j ≥

∑d
i=1 (1− wij)

−→a ∗(i)j ∀j (since by construction∑d
i=1

−→
b ∗(i)j =

∑d
i=1
−→a ∗(i)j from ordinal comparability). For any j, let wij = 1 − d/h for

i = 1, 2, . . . , h and wij = 1 for i = h+1, . . . , d, for any h = 1, . . . , d−1. The latter inequality

in combination with
∑d

i=1

−→
b ∗(i)j =

∑d
i=1
−→a ∗(i)j gives d

h

∑h
i=1

−→
b ∗(i)j ≥

d
h

∑h
i=1
−→a ∗(i)j ∀h and

∀j, or equivalently
∑h

i=1

−→
b ∗(i)j ≥

∑h
i=1
−→a ∗(i)j ∀h and ∀j, which is:

−→
b ∗j Lorenz dominates

−→a ∗j ∀j. Since j can be any class, inequality evaluations can be separated across classes.

Repeating through j = 1, . . . , n∗ and computing ∆(h, pj) = d
h

∑h
i=1

−→
b ∗(i)j −

d
h

∑h
i=1
−→a ∗(i)j
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always yields ∆(h, pj) ≥ 0 at any i and j. This is claim (iii).

(iii) ⇒ (i). Let B 4∆ A, which is equivalent to
∑h

i=1

−→
b ∗ij ≥

∑h
i=1
−→a ∗ij ∀h and ∀j =

1, . . . , n∗, that is
−→−→
B∗ ≥

−→−→
A∗, for given A∗ and B∗. Lemma 3 guarantees that there exists

a finite sequence of exchange operations mapping A∗ into B∗. Since the two matrices are

obtained by construction from A and B respectively exclusively through split of classes,

insertion/elimination of classes and interchanges (see Lemma 1) then condition (i) must

hold. Q.E.D.

A.3 Proof of Corollary 1.

Proof (i)⇒ (ii). From Theorem A.2 in Marshall et al. (2011, p.30), B 4∆ A is equivalent

to

conv{Πd

−→
b∗j : Πd ∈ Pd} ⊆ conv{Πd

−→
a∗j : Πd ∈ Pd}, for any j = 1, . . . , n∗, (14)

where the conv operator indicates the convex hull and Πd is a d−dimensional permutation

matrix. Since A∗,B∗ are ordinal comparable then
−→
a∗j and

−→
a∗j+1 are comonotone and

−→
b∗j

and
−→
b∗j+1 are also comonotone for any j = 1, . . . , n∗. It follows that ∀α ∈ [0, 1] and

j = 1, . . . , n∗ it also holds that:

conv{αΠd

−→
b∗j + (1−α)Πd

−→
b∗j+1 : Πd ∈ Pd} ⊆ conv{αΠd

−→
a∗j + (1−α)Πd

−→
a∗j+1 : Πd ∈ Pd}.

(15)

Recall that
−→
a∗j =

−→
a∗(pj) ∀j with pj = 1

d1t
d

−→
a∗j . It then follows that, by definition of

−→
a∗(p),

α
−→
a∗j + (1− α)

−→
a∗j+1 = α

−→
a∗(pj) + (1− α)

−→
a∗(pj+1) =

−→
a∗(αpj + (1− α)pj+1),

for any α ∈ [0, 1], for any pj , pj+1. The same condition holds for
−→
b∗(p). Substituting in

(15) yields:

conv{Πd

−→
b∗(αpj + (1− α)pj+1) : Πd ∈ Pd} ⊆ conv{Πd

−→
a∗(αpj + (1− α)pj+1) : Πd ∈ Pd},

for any j = 1, . . . , n∗,

which can be written as
∑h

i=1

−→
b (i)(p) ≥

∑h
i=1
−→a (i)(p) for p := αpj + (1 − α)pj+1, ∀h and

∀j, given that
−→
b (i)(p) =

−→
b ∗(i)(p) and −→a (i)(p) = −→a ∗(i)(p), which is (ii).

(ii)⇒ (i). If (ii) holds, then consider testing condition (ii) at pre-determined thresholds

pj for j = 1, . . . , n∗. Obtain pj such that pj = 1
d

∑
i
−→a ∗ij = 1

d

∑
i

−→
b ∗ij where A∗ and B∗
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are two ordinal comparable matrices of size d× n∗ issued from A and B respectively. This

condition is sufficient to grant ∆(h, pj) ≥ 0 for all i and j, which is (i). Q.E.D.

A.4 Proof of Corollary 2

Proof (i) ⇒ (ii). As shown in Lemma 1, for any pair A,A∗ ∈ Md such that A∗ is

obtained from A through insertion/deletion of empty classes, split of classes and inter-

changes (including permutations of groups as a special case of interchange), then
−→
a∗(i)(p) =

−→a (i)(p) for every p ∈ [0, 1]. Moreover, from Corollary 1, B 4∆ A is equivalent to
−→
b (p)

Lorenz dominates −→a (p) ∀p ∈ [0, 1]. By definition, the index Dw is invariant to split of

classes, insertion/deletion of empty classes and interchange transformations. Apply an

exchange transformation of amount ε > 0 from group ` to h with ` > h involving ad-

jacent classes j and j + 1 of matrix A. The change in Dw generated by this trans-

formation is obtained as a weighted average of the associated changes in −→a (`)(p) and

−→a (h)(p) weighted respectively by w`(p) and wh(p). Let pj := 1
d1t

d ·
−→a j denote the pro-

portion of population occupying the first j classes. By construction −→a (`)(p) and −→a (h)(p)

are affected by the exchange transformation only for p ∈ (pj−1, pj+1). The population

mass ε is transferred from group h to group ` uniformly in the interval (pj , pj+1) and

in opposite direction, still uniformly, in the interval (pj−1, pj ]. As a result the change in

Dw is
∫ pj
pj−1

[wh(p)− w`(p)] ε
p−pj−1

pj−pj−1
dp +

∫ pj+1

pj
[wh(p)− w`(p)] ε

pj+1−p
pj+1−pj dp ≤ 0, given that

wh(p)− w`(p) ≤ 0 for any p. Thus, the index is consistent as well with the implications of

exchange operations. This verifies that (ii) must be true.

(ii) ⇒ (i). Recall that from Corollary 1, condition (i) is equivalent to
∑h

i=1

−→
b (i)(p) ≥∑h

i=1
−→a (i)(p) for all h = 1, . . . , d and for all p ∈ [0, 1], where by construction

∑d
i=1

−→
b (i)(p) =

∑d
i=1
−→a (i)(p).

We show that if claim (i) does not hold then also claim (ii) should not hold. Suppose

that there exists a q ∈ (0, 1) and a group h∗ ∈ {1, 2, . . . , d − 1} such that the condi-

tion in claim (i) is violated, that is
∑h∗

i=1

−→
b (i)(q) <

∑h∗

i=1
−→a (i)(q). Then by continuity of

−→
b (i)(p) and of −→a (i)(p) with respect to p it also holds that there exists an interval (qL, q

H)

such that q ∈ (qL, q
H) where

∑h∗

i=1

−→
b (i)(p)−

∑h∗

i=1
−→a (i)(p) < 0 for all p ∈ (qL, q

H). Denote

∆(i)(p) :=
−→
b (i)(p)−−→a (i)(p), then the condition can be rewritten as

∑h∗

i=1 ∆(i)(p)< 0 for

all p ∈ (qL, q
H). Set wi(p) = 0 for all p /∈ (qL, q

H). It follows that Dw(B) − Dw(A) =∫ qH

qL

∑d
i=1wi(p)∆(i)(p)dp. Let wi(p) = 1− d/h∗ for all p ∈ (qL, q

H) and i = 1, 2, ..., h∗

and wi(p) = 1 for all p ∈ (qL, q
H) and i = h∗ + 1, ..., d, so that

∑d
i=1wi(p) = 0. Then∑d

i=1wi(p)∆(i)(p) =
∑d

i=1 ∆(i)(p)− d/h
∗·
∑h∗

i=1 ∆(i)(p). Recalling that by construction
∑d

i=1 ∆(i)(p) = 0
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it follows that

Dw(B)−Dw(A) = −d/h∗ ·
∫ qH

qL

h∗∑
i=1

∆(i)(p)dp.

Given that
∑h∗

i=1 ∆(i)(p)< 0 for all p ∈ (qL, q
H), it follows that Dw(B)−Dw(A) > 0, thereby

violating claim (ii). This establishes by contradiction that (ii)⇒ (i). Q.E.D.

A.5 An example illustrating the dissimilarity test

We provide an application of the criterion 4∆ for comparing A in (2), which is 3 × 4 in

size, to another matrix B which is 3× 5 in size, with the following entries:

A =


0.4 0.1 0.3 0.2

0.1 0.4 0 0.5

0.1 0.1 0.6 0.2

 , B =


0.3 0.2 0.3 0.05 0.15

0.2 0.3 0 0.35 0.15

0.1 0.1 0.6 0.05 0.15

 .

The two matrices are not ordinal comparable: they exibith a different number of classes,

thus margins do not coincide, morevoer groups are not ordered. To achieve ordinal compa-

rability, consider splitting class 3 of both matrices using a splitting parameter 1/2. Then

interchange groups 2 and 3 distributions from that class onward in matrix B. Moreover,

split class 4 of A using a parameter 1/2. This sequence of operations leads to A∗ and B∗

which are 3× 6 in size and are ordinal comparable. The obtained matrices are:

A∗ =


0.4 0.1 0.15 0.15 0.1 0.1

0.1 0.4 0 0 0.25 0.25

0.1 0.1 0.3 0.3 0.1 0.1

 , B∗ =


0.3 0.2 0.15 0.15 0.05 0.15

0.2 0.3 0 0.3 0.05 0.15

0.1 0.1 0.3 0 0.35 0.15

 .

(16)

The average cumulated population shares across the six classes are (0.2, 0.4, 0.55, 0.7, 0.85, 1)

in both matrices.

In order to test for dominance according to the criterion 4∆, consider the Lorenz curves

coordinates obtained from columns of the matrices A∗ and B∗. For matrix A∗, one has

that for p = 0.2 (class 1),
∑

i
1

3·0.2
−→a ∗(i)1 takes values 1/6 for h = 1, 2/6 for h = 2 and 1

for h = 3, whereas for p = 0.4 (class 2),
∑

i
1

3·0.4
−→a ∗(i)2 takes values 1/6 for h = 1, 7/12 for

h = 2 and 1 for h = 3, and so on for the other classes. Coordinates of the Lorenz curve∑
i

1
3·pj
−→
b ∗(i)j ∀j are obtained in the same way.

The dissimilarity test requires verifying that ∆(pj) = (∆(1, pj),∆(2, pj),∆(3, pj))
t ≥ 03

for all j = 1, . . . , 6. We find: 0.6·∆(0.2) = (0.1−0.1, 0.3−0.2, 0.6−0.6)t ≥ 03, 1.2·∆(0.4) =

1.65 ·∆(0.55) = 2.1 ·∆(0.7) = 03 and 2.55 ·∆(0.85) = (0.85−0.75, 1.7−1.65, 2.55−2.55)t ≥
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03. As expected, the dissimilarity criterion supports dominance and B 4∆ A is verified.

From Theorem 1 we conclude B 4 A for all dissimilarity orderings consistent with

axioms ISC, IEC, I, E. In fact, matrix B∗ is obtained from A∗ through a sequence of

exchange operations that involve the numbers underlined in (16).
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