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Abstract

We introduce a notion of fairness, inspired by the equality of opportunity literature, into many-to-one matching markets

endowed with a measure of the quality of a match between two entities in the market. In this framework, fairness

considerations are made by a social evaluator based on the match quality distribution. We impose the standard notion of

stability as minimal desideratum and study matching that satisfy our notion of fairness and a notion of efficiency based

on aggregate match quality. To overcome some of the identified incompatibilities, we propose two alternative

approaches. The first one is a linear programming solution to maximize fairness under stability constraints. The second

approach weakens fairness and efficiency to define a class of opportunity egalitarian social welfare functions that

evaluate stable matchings. We then describe an algorithm to find the stable matching that maximizes social welfare.
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Abstract

We introduce a notion of fairness, inspired by the equality of opportunity liter-

ature, into many-to-one matching markets endowed with a measure of the quality

of a match between two entities in the market. In this framework, fairness consid-

erations are made by a social evaluator based on the match quality distribution.

We impose the standard notion of stability as minimal desideratum and study

matching that satisfy our notion of fairness and a notion of efficiency based on

aggregate match quality. To overcome some of the identified incompatibilities, we

propose two alternative approaches. The first one is a linear programming solution

to maximize fairness under stability constraints. The second approach weakens

fairness and efficiency to define a class of opportunity egalitarian social welfare

functions that evaluate stable matchings. We then describe an algorithm to find

the stable matching that maximizes social welfare.
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1 Introduction

Economists are often concerned with allocation problems and search for mechanisms

that realize desirable allocations. Many of such problems can be framed as matching

problems in contexts where the price mechanism fails to adequately match demand and

supply. Classic examples are the marriage market or the allocation of students to public

schools. In this paper, we focus on the latter as a prominent example of many-to-one

matching settings, to study allocation mechanisms that equalize outcome opportunities

for entities in one side of the market.

Many political philosophers (Rawls, 1971; Sen et al., 1980; Dworkin, 1981a,b) have

debated whether all inequalities should be considered unacceptable or if there are cer-

tain inequalities that a fair society should tolerate and preserve. Recently, economists
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(Cappelen et al., 2007, 2013; Alesina et al., 2017) have also investigated preferences for

redistribution and tried to identify inequalities that individuals consider unfair. All these

scholars converge on the idea that inequalities stemming from individual characteristics

out of control or responsibility are unfair and detrimental to socio-economic develop-

ment. Consequently, a fair society- one that realizes equality of opportunity (EOp) -

should aim at levelling the playing field so that the final outcome of each individual is

ultimately due to their own choices. This paper focuses on the prominent interpretations

of the EOp paradigm (see Ramos & Van de Gaer, 2016, for a survey), which defines

social justice as equality of expected outcomes across groups of individuals with similar

circumstances (such as, for example, gender, parents’ education, and ethnicity) out of

their control.

Roemer & Ünveren (2017) argue that a key source of observed inequality of opportu-

nity (IOp) in income is the education premium that some students gain from attending

better schools. Other researchers, such as Corak (2013), have emphasized the impor-

tance of primary and secondary education in shaping opportunity and social mobility.

The school allocation setting is therefore of great interest for the EOp literature and, for

ease of exposition, the focus of our paper. It will be clear, however, that our framework

and results can be extended to any instance of many-to-one matching markers.

In many countries (e.g. Sweden, Chile, France, Turkey and the Netherlands) and

cities (e.g. New Orleans, New York, and Boston) around the globe, students are assigned

to public schools through centralized school choice systems. A school choice system is a

two-sided matching market in which there are students (or their parents) on one side of

the market, and public schools on the other side of the market. In this system, students

(or their parents) submit to the educational authority their preferences for public schools,

and the schools rank students based on certain criteria. With no (or fixed) tuition fees

for public schools, the central authority uses an algorithm to match students with schools

while respecting preferences and priorities. The goal of the educational authority is to

design an algorithm that finds assignments with desirable properties such as stability

and Pareto efficiency. Stability is the central fairness notion in two-sided matching

markets; it requires that in the final assignment there exist no student-school pair that

would prefer each other to their current matching. Pareto efficiency can be regarded

as a welfare concept in matching markets; an assignment is said to be Pareto efficient

if there is no other assignment that makes a student better off without hurting some

other student. The incompatibility between these properties is well-established in the

literature (see Abdulkadiroğlu & Sönmez, 2003) and a well known (compromise) solution

to this impossibility is the Deferred Acceptance (DA) algorithm (Gale & Shapley, 1962)

used, for example, by the educational authorities in New York City to assign students

to public high schools.

To promote disadvantaged groups of students or to reduce school segregation, the

matching literature has proposed various affirmative action policies. The three main

ones are: majority quotas (Abdulkadiroğlu & Sönmez, 2003), minority reserves (Hafalir

et al., 2013), and priority-based affirmative action. Majority quotas limit the number
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of majority students that can be admitted to a school, minority reserves retain seats

for minority students, and priority-based affirmative action prioritizes minority students

in the admissions process. While it has been shown (see Kojima, 2012; Doğan, 2016;

Afacan & Salman, 2016) that these policies may have negative effects on the targeted

groups, this paper argues that focusing on few particular minorities may lead us to

neglect other disadvantaged groups. For example, Harvard’s admission policy has been

criticized as one that indirectly favours Afro-America applicants at the expenses of the

Asian ones.1 Although we do not claim here that Harvard implements an affirmative

action policy in favour of Afro-America applicants, it is indeed possible for such a policy

to harm other disadvantaged groups. Intuitively, this happens because the focus on

improving the outcome of a single disadvantaged group, typical of affirmative action

policies, imposes no restrictions on who has to loose for this to happen (in Appendix A

we provide an example of this). This paper aims to implement a more holistic approach,

typical of the EOp paradigm, which takes into account all groups simultaneously.

Abdulkadiroğlu et al. (2020) find that parent’s preferences do not always align with

the quality of education their children can receive from given schools. Therefore, in this

paper, we follow Abdulkadiroglu et al. (2021) in considering the quality of a student-

school match as the relevant outcome for the central authority to evaluate assignments.

More precisely, we consider match quality to be the potential educational outcome a

student can receive by attending a school. Although we will discuss particular cases,

match quality is assumed to be measured by a central authority for any possible student-

school pair. Under such assumption, equalizing educational opportunities for students

coincides with equalizing opportunities for match quality. There is a clear parallel

between the school choice setting discussed so far and other many-to-one matching

problems. An example is the hospital-residency problem where we have a fixed number

of hospitals or medical programs, each with a limited number of available residency

positions, and a group of medical students who are seeking to be matched with a hospital

program for their residency training. Other examples are the adoption problem - where

many prospective parents may apply to adopt a child, but there are a limited number

of children available for adoption - or the refugees allocation - where refugees apply for

different reception centres with limited capacity. In all these settings, partial information

(for example, on the characteristics of the hospitals) or the simple dis-alignment between

the preferences of the evaluator and those of the entities in the market, can justify the

focus on match quality as a the relevant outcome: one which the evaluator wants to

equalize opportunities for.

In this paper, we consider the standard school choice setting, augmented with the

partition of students into types (groups of individuals with the same circumstances)

and a measure of match quality, and we consider three desirable properties for a school

assignment: stability, efficiency and fairness. While the former corresponds to the stan-

dard requirement in matching theory, the second property has already been proposed by

1See also Students for Fair Admissions, Inc. v. President and Fellows of Harvard College (Docket
20–1199).
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Abdulkadiroglu et al. (2021). The fairness requirement is, however, new and is based on

the idea of minimizing the inequality in types’ expected educational outcome. We high-

light the incompatibility between these three requirements and provide two approaches

to solve it. The first solution consists in using linear programming to identify the fair,

or the efficient, allocation within the set of stable ones. The second approach is a nor-

mative one which defines a family of opportunity egalitarian social welfare functions, in

line with Peragine (2004), and an algorithm - the Stable Opportunity Egalitarian (SOE)

- based on Cheng et al. (2008), which maximize social welfare within the set of stable

matchings.

We contribute to the literature in three ways. First, to the best of our knowledge, this

is the first paper that introduces the concept of Equality of Opportunity à la Roemer

(1998) in many-to-one matching settings. Second, despite the well-known and docu-

mented importance of public education in enhancing opportunities, the EOp literature

has hardly included centralized school admission systems within the set of policy recom-

mendations. This paper shows the possibility of designing school allocation mechanism

inspired to opportunity egalitarian fairness principles. Finally, our use of Cheng et al.

(2008)’s proposal in the SOE algorithm shows how this procedure can be implemented

in other many-to-one matching settings to maximize utilitarian social welfare functions

over the set of stable matchings.

The paper is organized as follows. Section 2 introduces the basic notation and

definitions. Section 3 introduces the desirable properties, discusses their compatibility

and the complexity of optimizing over the set of stable matchings. Section 4 introduces

a family of opportunity egalitarian social welfare functions and the SOE algorithm.

Section 5 discusses the positive and normative implication of the algorithm. Section 6

concludes.

2 The framework

An instance of centralized school choice problem, with EOp components, is a tuple

I = 〈I, S, P ,�, q, T,E, U〉, where I = {i1, i2, ..., i|I|} is the set of students and S =

{s1, s2, ..., s|S|} is the set of schools. We denote P= (Pi1 , ..., Pi|I|) the students’ prefer-

ences profile such that, for all i ∈ I and for all s, s′ ∈ S, s Pi s
′ means that i strictly

prefers s to s′. We assume preference profiles to be complete and strictly linear. The

school’s priority profile is �= (�s1 , ...,�s|S|); for all s ∈ S, �s is the complete and

strictly linear priority ranking of school s ∈ S over I, so that i �s i′ means that i has

higher priority than i′ of being admitted to s. The vector q = (qs1 , ..., qs|S|) is the quota

profile of schools, so that each school s ∈ S can admit at most qs ∈ N++ students.

We assume that the population of students can be partitioned in mutually exclusive

subgroups which, following the EOp literature,(Roemer, 1998) we call types. We denote

T = {t1, t2, ..., t|T |} the set of types (or type partition). As in many applications (Atkin-

son & Bourguignon, 1982; Peragine, 2002, 2004), we assume the existence of a complete

and transitive pre-order of types such that tE t′ means that students of type t ∈ T are
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not more advantaged (or have weakly higher needs) than those of t′ ∈ T .

The last key ingredient is the educational outcome or match quality. We assume that

there exists an |I|×|S| match quality matrix U , such that each cell (i, s) of U represents

the potential2 educational outcome of student i from attending school s. We assume

match quality to be comparable across students and schools. For convenience, abusing

notation, we will sometimes refer to a match quality function U : I × S → N++, whose

value U (i, s) is the match quality of the student-school pair (i, s), which coincides with

the relative entry of the match quality matrix. We assume U to be exogenously given

by a central authority or an evaluator with sufficient information to assess potential

educational outcomes.

Our assumption does not exclude relevant ways of measuring match quality. The first

approach consists in measuring potential educational outcomes according to individual

preferences, so that the better preferred school provides higher match quality than a less

preferred one. Such a measure can rely on the assumption that attending the favourite

school boosts motivation and potential outcomes of students, as well as on the idea that

students (or parents) have sufficient information to assess schools’ quality. As we will

discuss afterwards, from a normative perspective, such a match quality measure is in

line with the opportunity egalitarian principle of holding individual responsible for their

preferences.

A second approach to assess match quality relies on schools’ priority rankings; these

are often based on previous results or test scores that can be indicative of the potential

educational outcome. At the same time, schools may have a better understanding, based

on past experience, of the way students with different abilities respond to their particular

teaching methods. These two criteria for assessing match quality have, however, their

drawbacks: students (or parents) may not have full knowledge of the school character-

istics; students’ preferences may be influenced by external factors that are not relevant

(or can be detrimental) for educational outcome;3 schools may have incentives to admit

students with better parental background or prefer a certain student composition in

order to preserve a status.

A third way of defining match quality consists in taking the average income, or higher

education achievement, of other students that attended a given school. For example,

one may have information on the income of workers, form a particular ethnic group,

that attended school s in the previous years and use it to define the match quality of

future students of s belonging to the same ethnic group.

Another criterion to define match quality may rely on rankings by independent au-

thorities or organization. For example, a quick search on the net can provide future

university students with the top-ranked universities and departments worldwide. Simi-

lar rankings are likely to exist for smaller geographical areas and other education degrees,

so that the educational authority can assign match quality 1 to the worst school in the

2The outcome is potential because we do not assume to observe student’s future effort once enrolled.
3For example, a student may prefer the closest school even if it has low quality, rather than a better

school at five minutes walking distance.
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area, 2 to the second worst, 3 to the next one and so on. This is also in line with the idea

that two students attending the same school would get the same educational outcome.

A centralized school choice setting is a two-sided matching market where there is

no price mechanism to clear the market. Hence, an educational authority must apply a

matching algorithm to assign students to the available slots in public schools. The result

of such an algorithm is an assignment,4 which we express as a function µ from the set

I ∪S into the power set of I ∪S such that: (i) for all i ∈ I, µ(i) ∈ S; (ii) for all s ∈ S,

|µ(s)| ≤ qs and µ(s) ⊆ I; (iii) µ(i) = s if and only if i ∈ µ(s). In words, µ(i) = s means

that student i is enrolled to school s, and µ(s) denotes the subset of students admitted

to school s. A student i is assigned to a school s if and only if student i is one of the

students that school s admits. We assume that, in any final assignment, each student

is assigned to a school and all the students are entitled to a seat in any schools.

As in Cheng et al. (2008), we assume match quality to satisfy the following indepen-

dence property.

Assumption 1 (IND). For all i ∈ I and s ∈ S, the match quality U(i, s) is function of

i and s alone.

A key implication of IND is that U(i, µ(i)) does not depend on the assignment of

any other student j ∈ I/{i}. This makes it difficult to account for peer effects when

measuring match quality. It is worth underlining though that one can still define a match

quality measure that accounts for all the peer effects stemming from interactions with

other cohorts’ students already enrolled, without violating IND. To put it differently,

IND requires match quality to depend only on the characteristics of student and school

before to the matching. Therefore, the quality of future matches can be influenced by

the characteristics of the current student body.

Similar reasoning concerns the issue of school segregation. As it will be clearer later,

depending on the match quality matrix, school segregation may be compatible with

equality of opportunity. This is, however, only in part due to our assumption. While

IND prevents us from adapting match quality to the demographics of students admitted

simultaneously, the ethnic composition of the previously admitted students can be taken

into account by the central authority that assesses match quality.

3 Desirable properties

In this section we introduce desirable requirements for student-school assignments, dis-

cuss their compatibility and propose a first approach to realizing equality of opportunity

in a school choice setting.

It is standard in the matching literature to require stability of the final allocation.

LetM denote the set of all potential matching for the an instance I at hand.5 A stable

matching µ, in a two sided matching market, can be formalized as follows.

4Throughout the text we will use the terms assignment, matching and allocation as synonymous.
5We omit the reference to I in M to maintain a lighter notation.
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Definition 1 (Stability). The matching µ ∈ M is stable if there is no student-school

pair (i, s) ∈ I × S such that s Pi µ(i) and either |µ(s)| < qs or |µ(s)| = qs and i �s i′

for some i′ ∈ µ(s). The subset M ⊆M is the set of stable matchings.

In words, an assignment µ is stable if there is no student-school (i, s) pair such

that student i prefers school s to his assignment and either school s has an empty

slot or school s has no available slot and it ranks i higher than some of its admitted

student. Gale & Shapley (1962) prove that, for any instance I, there always exist a

stable assignment which can be obtained using the Deferred Acceptance algorithm (see

Section 4.1 for details). Hence, M 6= ∅
Stability guarantees the respect for boteh schools’ priorities and student’s prefer-

ences. In a non-stable assignment there exist a student i that prefers school s to her

current assignment and has higher priority than a student j admitted to s. This sit-

uation, which would be deemed unfair in the social choice literature, gives student i

the right to object the final assignment and complaint to the public authority. This

type of complaints can be a burden for the authorities which may find stability to be

desirable also from a practical point of view. In line with the prominent approaches in

the literature, we keep stability as the necessary requirement for any desirable school

allocation.

Let µ ∈M denote a potential assignment. The rest of this section discusses desirable

properties of µ. As it will be clearer afterwards, these properties are concerned with the

distribution and sum of match qualities induced by µ. Consequently, in M, they clash

with stability, which considers preferences and priority rankings independently of match

quality. This motivates our focus on desirable properties for stable matchings alone.

As also argued by Abdulkadiroglu et al. (2021), it is desirable to obtain an assignment

µ ∈M that maximized aggregate match quality. This is a natural efficiency requirement

that is supported both within and beyond the fairness literature. If U is the potential

educational outcome, most utilitarian social planners would aim to maximize the sum of

educational outcomes, as this increases human capital accumulation, growth, and social

welfare. The following axiom formalizes this requirement.

Axiom 1 (Strong Efficiency). There is no other assignment µ′ ∈ M such that∑
i∈I U (i, µ′(i)) is strictly greater.

The next property is a fairness requirement inspired to the EOp paradigm. For any

match quality measure U and assignment µ, let

ū (t, µ) =
1

|t|
∑
i∈t

U (i, µ (i))

be the educational opportunity of an individual belonging to type t ∈ T . This definition

of educational opportunity follows the ex-ante approach to EOp (Fleurbaey & Peragine,

2013; Roemer & Trannoy, 2015; Ramos & Van de Gaer, 2016), which evaluates individual

opportunities in terms of expected outcomes conditional on individual characteristics.
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Following Van de gaer (1993), part of the literature has converged on the idea that

types should be ordered according to their observed opportunities. In other words, a

type t is more advantaged that t′ if ū (t, µ) > ū (t′, µ); we will call this the endogenous

order. At the same time, after Atkinson & Bourguignon (1982), many authors have

acknowledged the desirability of a type pre-order - like E defined above - that orders

types in a way that accounts also for their needs, beyond the outcome of interest.

Depending on the framework, one may favour one approach or the other. For example,

to fight racial discrimination in the job market, it may not be sufficient to ensure equal

expected outcome across ethnic groups. A more effective policy could be to grant and

educational advantage to the discriminated groups: something that, as it will be cleared

below, can be achieved using a pre-order. At the same time, the use of an endogenous

order is in line with a broader idea of equality between groups which is relevant in many

economic contexts. Here, we follow the approach based on the exogenous type order;

the interested reader may refer to Appendix B for the alternative one.

Let us rearrange types according to the pre-order, so that tk C tk+1 for all k =

{1, ..., |T | − 1}. The following axiom relies on E, and a lexicographic order, to define a

strong fairness requirement.

Axiom 2 (Strong Fairness). There is no other assignment µ′ ∈ M such that either

ū (t1, µ
′) > ū (t1, µ), or there exist k ∈ {2, ..., |T |} such that, for all j ∈ {1, ..., k},

ū (tj , µ
′) = ū (tj , µ) and ū (tk, µ

′) > ū (tk, µ).

Axiom 2 expresses extreme aversion to inequality in types’ expected match quality.

In general, Axioms 1 and 2 are incompatible under stability. However, if the match

quality measure is such that any two individuals attending the same school obtain the

same educational outcome, then there always exist an assignment in M that satisfies

the two axioms. We formalize this in the following lemma.6

Lemma 1. If match quality is such that, for all i, i′ ∈ I and s ∈ S, U (i, s) = U (i′, s),

then there always exist an assignment µ ∈M that satisfies Axiom 1 and 2.

The formal proof is left to the reader, we provide here only a sketch. Intuitively,

one can rename schools so that, for all i ∈ I, U (i, s1) ≥ U (i, s2) ≥ ... ≥ U
(
i, s|S|

)
, and

types so that t1Et2E...Et|T |. Then, it is sufficient to start with filling s1’s capacity with

students from t1, passing to s2 if qs1 < |t1|, and to the following schools if necessary.

Then we assign students from t2 to the best schools with available seats and so on.

The reader may observe that in Lemma reflem:possibility there is no guarantee that

the resulting assignment will also be stable. Given the incompatibility between the

efficiency and fairness axioms, the central authority may start with listing all stable as-

signments, identifying the fair ones according to Axiom2, and choosing the most efficient

among them. Although intuitive, this is not a trivial procedure because constructing

the set of all stable assignments M can be extremely difficult for some school choice

instances, as the number of stable assignments can be very big. It is well known in the

6The condition in Lemma 1 is not necessary, other match quality measures would ensure the result.
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matching literature (see Gusfield & Irving, 1989) that finding all stable assignments,

hence constructing M , is NP-complete (i.e. not solvable by a computer).

Despite the computational complexity, the problem of finding a stable assignment

that satisfies Strong Fairness can be solved using Linear Programming (LP). In particu-

lar, Bäıou & Balinski (2000) identifies a series of constraints one can use to check stability

of a matching in an LP problem. Then it is sufficient to transform the lexicographic

order of Axiom 2 into a linear function and set it as objective.

Formally, for any matching µ, let xµ ∈ {0, 1}|I|×|S| be such that xµ(i,s) = 1 if µ(i) = s

and xµ(i,s) = 0. Let the match quality matrix U be such that all entries are strictly

positive integers and denote Ū > U ≥ 1 respectively the highest and the lowest match

quality in U .7 Abusing notation, let u(tm, µ) =
∑
i∈tm
s∈S

1
|tm|U(i, s)xµ(i,s). The linear

programming (LP) below, finds a stable assignment that satisfies Strong Fairness.

max
∑|T |
m=1 u(tm, µ)Ū |T |−m (LP − 1)

s. t.
∑
s∈S x

µ
(i,s) = 1 ∀i ∈ I∑

i∈I x
µ
(i,s) ≤ qs ∀s ∈ S

∑
(i′,s)∈C(i,s) x

µ
(i′,s) ≥ qs

∀s ∈ S,
∀C(i, s) ∈ Cs

Specifically, the first constraint imposes that any student is assigned to one school,

the second checks that the assignment respects the quota of each school. The last

condition of LP is checking if, for each student-school pair, (i, s) either student i is

matched to a better school than s or the number of students who are ranked better

than i in �s and admitted by the school s is equal to |qs|. This condition, provided

by Bäıou & Balinski (2000), overlaps with the definition of stability; the reader may

refer to Appendix C for more details on the notation. The correctness of constraints of

LP above are proved by Bäıou & Balinski (2000), the following proposition proves the

correctness of the objective function.

Proposition 1. The linear programming LP-1 provides a stable matching that satisfies

Strong Fairness.

Proof. See Appendix C.1.

The same constraints can be used to formulate the linear programming that finds a

stable allocation that satisfies Axiom 1.

Observe that LP-1 does not consider the total match quality. Consequently, one

may end up sacrificing much of the aggregate educational opportunity for the sake of

fairness. To limit this trade off, we can impose an additional constraint of the sort

7This restriction is necessary for a correct linear programming formulation. Observe also that if
Ū = U then any matching trivially satisfies Strong Fairness.
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∑
i∈I

U(i, s)x(i,s) ≥ y

for some positive number y. Then, a grid search on the values of y can help the

evaluator in choosing the right balance between the otherwise incompatible efficiency

and fairness requirements.

One of the main drawbacks of using linear programming is that it can be difficult to

understand and interpret the solution ex post. Linear programming is often considered

a “black box” approach, as it can be challenging to understand how the solution was

obtained and what specific constraints or factors led to the final outcome. In many real

life contexts, we argue, the process of how an allocation is obtained is just as important

as the outcome itself, and being able to understand and reconstruct all the steps that

led to the outcome is crucial.

We conclude this section by considering weaker notions of efficiency and fairness.

The properties below are interesting both as ways of weaken Axioms 1 and 2, and as

guidelines for a central authority that wants to improve, if possible, an existing stable

allocation. Before listing the axioms, let us recall a well known result in matching theory

literature known as Rural hospitals theorem (Roth, 1986, 1984). This theorem states

that if a school is not filling its capacity in some stable matching, then it will not fill

its capacity in any other stable matching. In other words, under the assumption that

µ ∈ M , any µ′ ∈ M can only be obtained via (consecutive) swaps of students within

seats that are allocated in µ ∈M . With this result in mind, we can define the following

notions of improvement, and the related axioms.

A matching µ ∈ M is a net improvement of µ′ ∈ M if U (k, µ(k)) ≥ U (k, µ′(k)) for

all k ∈ I \ {i}, and U (i, µ(i)) > U (i, µ′(i)). In words, a net improvement is a series of

swaps that increase match quality of a student, without hurting anyone else.

Axiom 3 (Efficiency). There is no net improvement µ′ ∈M .

In the special case where match quality corresponds to student’s utility from a match-

ing, Axiom 3 corresponds to the standard notion of Pareto efficiency. We continue with

defining fairness improvements in terms of progressive Pigou-Dalton transfers.

A matching µ ∈M is a fairness improvement of µ′ ∈M if U (k, µ(k)) ≥ U (k, µ′(k))

for all k ∈ I \ {i, j}, with i and j such that i ∈ t, j ∈ t′, for some t, t′ ∈ T such that

tC t′, U (i, µ(i)) = U (i, µ′(i)) + δ and U (j, µ(j)) = U (j, µ′(j))− δ, for some δ > 0.

The fairness improvement considers the type pre-order, so that improving the out-

come of an individual in a worse off type, at the expenses of someone in a better off

type, improves fairness of the matching. The corresponding local fairness condition can

be expressed as follows.

Axiom 4 (Fairness). There is no fairness improvement µ′ ∈M .

The following section embeds Axioms 3 and 4 in a Social Welfare Function (SWFs),

which is a tool that allow us to compare allocations. Interestingly, imposing additional
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standard properties on the SWF will allow us to define an algorithm that searches for

the stable allocation that satisfies Axioms 3 and 4.

4 Normative approach

The previous section discussed the trade-off between Strong Efficiency and Strong Fair-

ness and how the linear programming solution may be seen as unsatisfactory. In this

section, a different approach is proposed. We begin by characterizing a family of Social

Welfare Functions (SWFs), that is assumed to represent the preferences of a central

authority, and is used to evaluate stable matchings. As before, we impose stability to

be the minimal requirement for a desirable school allocation. Therefore, the central

authority will aim at maximizing her SWF over the set of all stable assignments.

Denoting with M the set of stable matchings, W : M → R is the function that

measures the social welfare associated to a stable school assignment. In line with the

preferences of an opportunity egalitarian social evaluator, we assume SWFs to satisfy

the following axioms.

Monotonicity (MON) - For all µ, µ′ ∈M , if U (i, µ(i)) ≥ U (i, µ′(i)) for all i ∈ I,

with at least one strict inequality, then W (µ) ≥W (µ′).

Monotonicity is inspired by Efficiency. This property simply states that improving

match quality of someone, without reducing it for anyone else, cannot worsen social

welfare.

Additivity (ADD) - For all µ ∈ M , there exist twice differentiable (almost

everywhere) functions φi : R→ R, for all i ∈ I, such that W (µ) ≡
∑
i∈I φi (U (i, µ(i))).

The previous property imposes our social evaluation to be based on a standard

utilitarian aggregation of match qualities. This axioms imposes separability across indi-

viduals, so that the comparison between two alternative allocations can be performed by

comparing the changes in match quality of the sole individuals with a different match-

ing. This allows for a more straightforward and transparent evaluation of the different

allocations and makes it easier to understand how changes in match quality affect the

overall matching.

Within type symmetry (SYM) - For all µ, µ′ ∈ M , if there exists t ∈ T and

i, i′ ∈ t′ such that U (i′, µ′ (i′)) = U (i, µ (i)) > U (i′, µ (i′)) = U (i, µ′ (i)), then W (µ) =

W (µ′).

Within type symmetry implements the well-known anonymity principle, adapting

it to a context in which circumstances do matter in the social evaluation. In words,

this property requires social evaluation not to change if there is a permutation of match

qualities involving individuals with the same characteristics. In other words, within a

type, it does not matter who has a given match quality level.

Within types inequality neutrality (WTIN) - For all µ, µ′ ∈ M , if there ex-

ist t ∈ T , i, i′ ∈ t and a positive real number δ such that U (i, µ′(i)) ≥ U (i′, µ′(i′)),

U (i, µ(i)) = U (i, µ′(i))+δ, U (i′, µ(i′)) = U (i′, µ′(i′))−δ, and U (i′′, µ(i′′)) = U (i′′, µ′(i′′))

for all other i′′ ∈ I, then W (µ) = W (µ′).
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This property strengthen the idea that the match quality distribution within a type

is matter of indifference for our social evaluation. Indeed, among individuals with the

same circumstances, the final allocation should depend on their preferences, together

with school priorities. Although one may argue that this is not the case for the latter, the

former are expression of individual freedom which we intend to respect where possible.

Between types inequality aversion (BTIA) - For all µ, µ′ ∈ M , if there exist

two types t, t′ ∈ T such that t C t′, i ∈ t, i′ ∈ t′ and a positive real number δ such

that U (i′, µ(i′)) = U (i′, µ′(i′)) − δ, U (i, µ(i)) = U (i, µ′(i)) + δ and U (i′′, µ(i′′)) =

U (i′′, µ′(i′′)) for all other i′′ ∈ I, then W (µ) > W (µ′).

Between type inequality aversion mimics Axiom 4 in the previous section.

As also shown in Peragine (2004), the five axioms above characterize a family of

linearly additive social welfare functions. Let φ′ and φ′′ denote respectively the first and

second derivative of φ.

Lemma 2 (Peragine (2004)). For all µ ∈ M , W satisfies MON, ADD, SYM, WTIN

and BTIA if and only if

W (µ) =
∑
i∈I

φi (U (i, µ(i))) (1)

where the functions φi : R → R satisfies the following conditions: (i) for all i ∈ I,

φ′′i = 0; (ii) for all i, i′ ∈ t, φ′i = φ′i′ > 0; and (iii) for all i ∈ t, i′ ∈ t′ and t, t′ ∈ T , if

tC t′, then φ′i > φ′i′ > 0.

In the rest of this section, after introducing some necessary definitions and notation,

we describe the Stable Opportunity Egalitarian (SOE) algorithm, which identifies the

stable allocation that maximizes a given instance of eq. (1).

Irving et al. (1987) designed an algorithm to find a stable matching, in one-to-one

matching setting, that maximizes preference satisfaction in both sides of the markets.

Their algorithm relies on the concepts of “rotations” and “rotation poset” previously

introduced by Irving & Leather (1986). Bansal et al. (2007) generalizes the concept

of rotations to many-to-many matching markets. Cheng et al. (2008) show that, under

particular restriction on what they call happiness measures, Irving et al. (1987) algorithm

can be generalized to many-to-one matching setting. In our setting, we draw a parallel

between Cheng et al. (2008) happiness function and our match quality measure, and use

the proposed algorithm to maximize social welfare.

To properly define the algorithm, we need to introduce a series of technical concepts

from the matching literature. We do so in the following subsection, which the expert

reader may overlook.

4.1 Technical preliminaries

We begin with the well-known Deferred Acceptance algorithm (Gale & Shapley, 1962)

in two different versions: one in which students propose to schools and schools choose

who to admit, and one in which schools propose to students who then choose where to

enrol.
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We call Student-proposing Deferred Acceptance the following algorithm, and denote

µI the resulting school allocation. (Step 1) Each student applies to her first ranked

school. Each school collects the applications and temporarily assigns seats to applicants,

one at a time, following the priority order up until the quota. Any remaining applicant

is rejected. (Step k) Each student who was rejected in the previous step applies to her

next most preferred school. Each school considers all the applicants - the new and the

temporarily assigned ones from the previous step - and temporarily assigns its seats

one at a time following the priority order up until the quota. Any remaining applicant

is rejected. (Termination) If in the previous step no student was rejected, then the

algorithm terminates and all the temporary assignments become final.

The same algorithm is called School-proposing Deferred Acceptance when schools and

students are inverted in the process. We denote µS the resulting allocation.

Another necessary concept is preferences and priorities reduction, or pruning. This

process identifies the student-school pairs that cannot be part of a stable assignment and

removes them from the preferences and priority rankings. The first step of pruning is

due to a well known result in matching theory literature, called Rural hospitals theorem

(Roth, 1986, 1984). This theorem states that if a school is not filling its capacity in

some stable matching, then it will not fill its capacity in any other stable matching.

Moreover, this school will get always the same set of students in any stable matching.

The second step of pruning is removing all the schools which are ranked above µI(i)

in the preferences of student i and the schools which are ranked below µS(i). Since

µI is the Pareto optimal allocation for students among all stable matchings, there is

no stable matching µ where µ(i)PiµI(i). Conversely, for any student i, his assignment

in any other stable matching µ(i) is weakly better than µS(i). Hence, for any student

i, there is no stable matching µ where µS(i)Piµ(i). The third step of pruning is for

the priority rankings of schools. The structure of the set of stable matchings holds

symmetrically in terms of school’s priority ranking, so that µS (resp. µI) is the best

(resp. worst) stable matching from schools’ perspective. The final step of pruning is to

remove all non mutually acceptable student-school pairs on the priority rankings and

the preferences.

Formally, the pruning of preferences and priority rankings in an instance I is obtained

with the following procedure. (Step 1) For any school s ∈ S such that |µI(s)| < qs: (i)

remove from �s all students i /∈ µI(s); (ii) for all i ∈ µI(s) remove from Pi all schools

s′ 6= s. (Step 2) For any student i ∈ I, remove from Pi all schools s ∈ S such that

sPiµI(i) or µS(i)Pis. (Step 3) For any school s ∈ S, remove from �s all students i ∈ I
such that i �s i′ for all i′ ∈ µS(s), or i′′ �s i, for all i′′ ∈ µI(s). (Step 4) For each s ∈ S
and i ∈ I: (i) if i ∈�s but s /∈ Pi, remove i from �s ; (ii) if s ∈ Pi but i /∈�s, remove s

from Pi.

The pair of pruned preferences and priorities, denoted (P ?,�?) define the set of

admissible student-school pairs in a stable matching.

We call graph of a matching µ, the directed graph Gµ = (Vµ, Eµ) in which: (i) the

set of vertices, Vµ, is formed by the set of student-school pairs, (i, s) ∈ I × S, such that
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i is the worst student for school s according to �?s and µ(i) = s, and (ii) Eµ is a set of

oriented edges such that: there is an edge from a vertex (i, s) to a vertex (i′, s′) whenever

s′ is the second best school after µ(i), according to P ?i . Endowed with the notion of

graph of a matching, we can define the following key ingredient of our algorithm.

Let µ denote a school assignment. A rotation

r = 〈(i1, s1), (i2, s2), ..., (in, sn)〉

on Gµ = (Vµ, Eµ), or exposed rotation in µ, is a sequence of vertices in Vµ such that for

all j ∈ {1, ..., n}, there is an oriented edge from (ij , sj) to (ij+1, sj+1) where j is taken

modulo n. 8 We also call r the exposed rotation in µ starting from i1.

In words, a rotation on a graph is a cycle that, starting from a given vertex, follows

a sequence of edges until it reaches the starting point.

Let Vµ \ r denote the set of student-school pairs which are not in r. A matching µ′

eliminates an exposed rotation r in µ - denoted µ′ = µ \ r - if, for all student-school

pairs in r = 〈(i1, s1), (i2, s2), ..., (in, sn)〉, µ′(ij) = sj+1 where j is taken modulo n,

and for all student-school pairs in Vµ \ r, µ(i) = µ′(i). In words, a rotation defines

a sequence of re-allocations in which student j (who was the least preferred student

by the school she is assigned to) goes to his second most preferred school, taking the

spot of j + 1 (who was the least preferred student by the school he is assigned to) who

goes to his second most preferred school and takes the spot of j + 2 who then goes to

his second most preferred and so on. If we implement this sequence of transfers, we

obtain a new assignment which is said to be the matching that eliminates that rotation.

Eliminating an exposed rotation r in µ creates a new assignment µ′ = µ \ r. Starting

from a student i such that µ′(i) 6= µS(i), we can expose new rotations in µ′. This process

of eliminating an exposed rotation, and exposing new rotations, allows us to define the

set of all exposed rotations, starting from a given matching µ. Since some rotations

will be exposed only after eliminating others, it is useful to talk about successors and

predecessors of a rotation. We say that a rotation ρ is a successor of r - denoted r < ρ -

if ρ is an exposed rotation in µ \ r and it is not possible to expose ρ without eliminating

r. Observe that, since there may be multiple exposed rotations in an assignment, a

rotation ρ may be only exposed after eliminating multiple rotations.

For each rotation ρ = 〈(i1, s1), (i2, s2), ..., (in, sn)〉 exposed on µ, we define a weight

ω(ρ) = W (µ \ ρ)−W (µ). Observe that, because match quality satisfies IND and W is

linearly additive, ω(ρ) =
∑
ij∈ρ φij (U(ij , sj+1))− φij (U(ij , sj)) for j taken modulo n.

Given an instance I = 〈I, S, P ,�, q, T,C, U〉, denote Π (I, µ) the set of all exposed

rotations starting from µ. Notice that the relation < defines a partial order on Π (I, µ),

so that (Π (I, µ) , <) forms a partially ordered set. A closed set in the poset Π (I, µ) is

a subset C(I, µ) of Π (I, µ) such that

ρ ∈ C(I, µ), r < ρ⇒ r ∈ C(I, µ)

8That is, if j = n, then j + 1 = 1.
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In words, a subset of rotations C(I, µ) ⊂ Π (I, µ) is closed if it contains all the pre-

decessors of its elements. Following Bansal et al. (2007), we can formalize the following

result.

Lemma 3 (Bansal et al. (2007)). Let I be an instance of school choice problem with

EOp components and µI its student-proposing DA assignment. There is a one-to-one

correspondence between the closed subsets of Π (I, µI) and the set of all stable matchings

of I: each closed subset C (I, µI) of Π (I, µI) corresponds to a unique stable matching

generated by eliminating all the rotations in C (I, µI).

The previous lemma provides a powerful result which tells us that we can somehow

explore the set of all stable matchings via looking at all exposed rotations, starting

from the student-proposing DA assignment. While listing all the stable matchings of

I is NP-hard (Gusfield & Irving, 1989), Π (I, µI) can be constructed with an efficient

algorithm9 (see Cheng et al., 2008) in the following way.

Step 0: Run student proposing and school proposing DAs, find the respective match-

ings µI and µS , and prune preferences and priority rankings.

Step 1: (1.1) Form the graph of matching µI - GµI
. Starting from a student i who

is not matched to µS(i), find an exposed rotation ρ1. (1.2) Add this rotation to the

rotation poset (Π (I, µI)) and compute ω(ρ1) = W (µI \ ρ1)−W (µI).

Step 2: (2.1) Form the graph of µI \ ρ1 and, starting from a student i who is not

matched to µS(i) find an exposed rotation ρ2. (2.2) Add this rotation to the rotation

poset and compute its weight ω(ρ2) = W (µI \ {ρ1, ρ2})−W (µI \ ρ1).

Step k: (k.1) Form the graph of µI \ {ρ1, ...ρk−1} and expose a rotation ρk. (k.2)

Add this rotation in the rotation poset and compute its weight.

Termination: Terminate this procedure until, after eliminating a rotation, you ob-

tain µS .

No student-school pair can belong to more than one rotation (Cheng et al., 2008).

Consequently, there are at most |I| · |S| rotations. After finding all the rotations, we

need to choose a closed subset of Π(I, µI) such that eliminating all the rotations in this

subset will maximize our social evaluation function. A graphical example of a rotation

poset is provided in Figure 1. The graph in is composed of vertices, which correspond to

the rotations, and edges that connect each rotation to its successors. For a more detailed

explanation on how to construct the such a graph, see the example in Appendix D.

Finding the maximum closed subset of Π(I, µI) is a selection problem like the one

introduced by Balinski (1970) and Rhys (1970). Picard (1976) shows that this problem

can be easily solved using Linear Programming. In particular, let n be the number of

rotations in Π(I, µI), then finding the maximum closed subset is equivalent to finding

the vector x ∈ {0, 1}n that solves

9An example of this algorithm is reported in the Appendix.
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Figure 1: A graphical example of a rotation poset.
ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

ρ8

ρ9 ρ10

max
x

z =

n∑
j=1

ω (ρj)xj + λ

n∑
j=1

n∑
h=1

ajhxj (−1 + xh) (2)

where ajh = 1 if, on the rotation graph, there is a directed edge from ρh to ρj (i. e.

ρj is a successor of ρh) and ajh = 0 otherwise, and λ must be an arbitrarily large real

number.10 In words, xj = 1 means that the rotation j is in the subset. For each possible

subset of Π(I, µI), the first element of Eq. 2 sums the weights of the rotations in the

subset and the second element checks that, for each of these rotations, the respective

predecessors are included in the subset. Suppose that ρh is a predecessor of ρj , ρj is in

the subset but ρh is not, then ajhxj (−1 + xh) = 1 · 1(−1 + 0) = −1.

Picard (1976) shows that there is a more efficient way of solving this problem by

reducing the graph of the rotation poset to a network flow graph and applying a min-

cut algorithm. This is the procedure we suggest in our algorithm. However, to maintain

a simple exposition, we do not include the details of this methodology in the main text,

the interested reader may refer to Appendix E.

4.2 The algorithm

We introduce now the Stable Opportunity Egalitarian (SOE) algorithm, which is struc-

tured as follows. First, set a functional form for W . Second, construct the rotation

poset. Third, construct network flow of rotations. Fourth, apply an efficient minimum

cut algorithm to identify the closed subset of rotation we need to eliminate to maximise

W . Fifth, return the optimal allocation. The pseudo-code of the SOE algorithm is as

follows.

Let us recall that there are at most |I| · |S| rotations. Let t represent the longest

running time that takes to calculate ω(ρ) for some rotation ρ. It takes at most |I|4

running time to find the optimal closed subset of Π (I, µI) (see Gusfield & Irving (1989),

page 129-133). Putting all these calculations together, we can conclude that the SOE

algorithm takes at most |I||S|t + |I|4 running time; this is an efficient running time

performance.

The following two statements prove the correctness of the SOE algorithm.

10It must be λ > max{ω(ρj)}nj=1 to ensure that the optimal solution satisfies∑n
j=1

∑n
h=1 ajhxj (−1 + xh) = 0, which means that we have found a closed subset.
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Algorithm 1 The SOE algorithm (Cheng et al., 2008)

1: Input: W and I = 〈I, S, P ,�, q, T,E, U〉
2: Compute µI and µS .
3: Prune preferences of students and priority rankings of schools;
4: µ← µI , Π (I, µ) = ∅
5: while µ 6= µS do
6: Find i∗ ∈ I such that µ(i∗) 6= µS(i∗)
7: Find a rotation ρ exposed in µ starting from i∗

8: Add ρ to Π (I, µ)
9: ω(ρ)←W (µ \ ρ)−W (µ)

10: µ← µ \ ρ
11: end while
12: Construct the network flow of rotations and use min-cut to find C∗ =

arg maxC⊂Π(I,µ)

∑
r∈C ω(r);

13: µ← µI \ C∗
14: Return µ

Lemma 4. Let I be a school choice instance. Let C be a closed subset of Π (I, µI), and µ

be the stable matching obtained by eliminating all the rotations in C. If U satisfies IND,

and W satisfies MON, ADD, WTIN, SYM and BTIA, then W (µ) = W (µI)+
∑
r∈C ω(r).

The previous result is a direct implication of the additive decomposability of Eq. 1,

combined with the independence property satisfied by the match quality measures in

our setting. We now provide the main result of the paper.

Theorem 1. Let I = 〈I, S, P,�, q, T,C, U〉 be an instance of centralized school choice

setting with EOp components. Let W : M → R be a social welfare function that

satisfies MON, ADD, WTIN, SYM and BTIA. Then, the Stable Opportunity Egalitarian

algorithm maximizes W over the set of stable assignments for I.

Proof. By Lemma 4, finding a closed subset C that maximizes W is equivalent to finding

a matching that maximizes our social evaluation function. By Lemma 3, this matching

will be stable.

5 Discussion

In this section we comment on relevant features of the SOE algorithm, and its link with

the normative principles behind the EOp paradigm.

Let us begin by recalling that Student-proposing DA delivers the best allocation,

among stable ones, in terms of preference satisfaction. Consequently, if match quality

corresponds to student’s preference satisfaction,11 then µI is optimal, for any SWF as

in eq. (1). The reader may notice that with this type of match quality, it is as if the

central planner aligns his preferences to those of the students. In the EOp paradigm,

this situation corresponds to a strong reward principle which calls for preservation of all

11That is, for all i, i′ ∈ I and s, s′ ∈ S, sPis
′ implies U (i, s) > U (i, s′), and Pi(s) = Pi′ (s

′) implies
U (i, s) = U (i′, s′).

17

                            19 / 33



those inequalities due to factors within individual control: preferences in our context. To

put it differently, the use of Student-proposing DA to allocate students can be justified

by the normative principle of respecting students’ preferences and holding individuals

responsible for them (Dworkin, 1981b).

The SOE algorithm deviates from either µI or µS whenever the central authority’s

preferences do not coincide with those of the students or schools. This is the case, for

example, if the evaluator does not want to hold individuals responsible for their pref-

erences, which can be influenced by factors out of individual control. In the matching

literature, affirmative action policies are directly or indirectly aimed at modifying pri-

ority rankings in favour of particular groups. In our context, we achieve a similar result

by shifting the attention of the social evaluator toward other preferences of which the

match quality measure, in combination with the social welfare function, offer a repre-

sentation. Equalizing opportunity is tightly linked with the rationale behind affirmative

action policies. Intuitively, if we want to improve chances for disadvantaged students to

get into preferred schools, it may be sufficient to modify the schools’ priority rankings

by upward moving these students. Observe that we can still focus on multiple groups at

the same time by calibrating the bonuses given to students from different types. In line

with the principle of respect for students’ preferences, we can run Student-proposing DA

and implement the resulting allocation, call it µ∗. Despite the adverse effect this can

have in theory (see Kojima, 2012), we should expect this to improve the situation for the

disadvantaged groups. The matching µ∗ may fail to satisfy the Stability requirement

which is defined in terms of the original preferences and priority rankings. However, if

µ∗ satisfies Stability, then it is possible to define a match quality measure U and a social

welfare function W such that the SOE algorithm identifies µ∗ as the optimal allocation.

The SOE algorithm has the advantage of being a deterministic procedure in which

we can reconstruct all the passages that lead to a given allocation. Intuitively, the start-

ing point of the algorithm is always the best possible allocation for students. Then,

it proceeds with sacrificing student’s preference satisfaction in order to maximize the

evaluator’s preferences, represented by the social welfare function. In this sense, when

moving away from Student-proposing DA, the algorithm trades off Pareto efficiency

and maximization of the evaluator’s preferences. It is worth underlining here that, in

line with our discussion in Section 3, we can use linear programming to maximize W

under the stability constraints. Abstracting here form all issues related to the computa-

tional complexity of the two procedures, the SOE algorithm is clearly more transparent

and easier to back-track. For sensitive matters like school allocation, we believe this

constitutes a strong motivation for preferring our deterministic procedure to a linear

programming solution.

We conclude this section by discussing other applications of the SOE algorithm.

Problems like doctor-hospital or refugees allocation are other instances of many-to-one

matching problems in which opportunity egalitarian principles find application. In our

setting we focus on the problem of equalizing student’s opportunity for good education.

Social planners may be concerned with the symmetric problem of equalizing hospital’s
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opportunity for good doctors, with the aim of reducing regional disparities in the health

care system. The SOE algorithm offers a solution to this problem as well. Clearly, the

same holds for any many-to-one matching setting in which can be expressed, as we do

in this paper, as a problem of maximization of a linear social welfare function over the

set of stable matchings.

6 Conclusion

We considered a relevant case of many-to-one matching market - the standard school

choice setting - augmented with a partition of the population into types and a mea-

sure of match quality. We introduced discussed three desirable properties for a school

assignment: stability, efficiency and fairness. The former corresponds to the standard

requirement in matching theory and the second property has already been proposed by

Abdulkadiroglu et al. (2021). Our fairness requirement, inspired by the opportunity

egalitarian paradigm, is novel and based on the idea of minimizing the inequality in

types’ expected educational outcome. We highlighted the incompatibility between these

three requirements and provided two approaches to solve it. The first solution is a lin-

ear programming to identify the fair, or the efficient, allocation within the set of stable

ones. The second solution, which is also our favourite, defines a family of opportunity

egalitarian social welfare functions, together with an algorithm that maximizes social

welfare over the set of stable matchings.

To the best of our knowledge, this is the first paper to draw a clear connection be-

tween the school choice and the equality of opportunity literature, and we believe this

to be only a first step toward a more consistent dialogue between those two literatures.

There is great scope for further exploring how existing algorithms in the matching lit-

erature can be used to solve complex fairness issues, like equality of opportunity, that

go beyond the standard aversion to inequality. The literature has proposed different

families of opportunity egalitarian social welfare functions, many of which fail to satisfy

the independence property. Identifying algorithmic solutions to the problem of maxi-

mizing non-linear opportunity egalitarian social welfare functions over the set of stable

matchings is highly ranked in our research agenda.

Finally, we underline that problems like doctor-hospital or refugees allocation are

other instances of many-to-one matching problems in which opportunity egalitarian prin-

ciples find application. Clearly, as far as one can express the problem as a maximization

of a linear social welfare function over the set of stable matchings the SOE algorithm

can be used to obtain a stable welfare maximizing allocation. This greatly enlarges the

possible application of our approach, opening the way to further investigations on algo-

rithmic solutions that satisfy complex fairness principles like the opportunity egalitarian

one.
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Appendix A Affirmative action policies versus equal-

ity of opportunity

We propose here an simple example of how affirmative action policies may not align

with opportunity egalitarianism. Consider a simple scenario with six students and three

schools, each offering two seats. The schools differ in quality, which we approximate by

using the average probability of a student receiving an offer from a top college. School 1

has probability of 4%, school 2 has 10%, and school 3 has 20%. Suppose that students 1

and 2 belong to the most disadvantaged population subgroup, students 5 and 6 belong to

the most advantaged subgroup, while students 3 and 4 belong to a population subgroup

within these two extremes. Let preferences of students (i) and priority rankings of

schools (s) be:

i1 = i2 : s3, s1, s2

i3 = i4 = i5 = i6 : s3, s2, s1

s1 : i6, i5, i1, i2, i3, i4

s2 = s3 : i6, i5, i4, i3, i2, i1
where, for example, s3 is the most preferred school for i1 and i2, and i4 is the least

preferred student for s1. Following a standard approach in the literature, we represent

the opportunity distribution with a vector p = (p1, p2, p3), where pt is the expected

probability for a random student of group t of receiving an offer from a top college. Let

us consider the opportunity distributions generated by the following three allocations:
DA

s1 ← i1, i2

s2 ← i3, i4

s3 ← i5, i6




EOp

s1 ← i1, i2

s2 ← i3, i4

s3 ← i5, i6




AA

s1 ← i1, i2

s2 ← i3, i4

s3 ← i5, i6


where DA is the standard Gale & Shapley (1962)’s Deferred Acceptance (DA) algo-

rithm explained in Section 4, EOp is obtained by exchanging the school assignment of

students 2 and 6, and AA is obtained when school 3 reserves one seat to students from

the most disadvantaged group (a minority quota) and DA is implemented. Observe that

pDA = (4, 10, 20), pEOp = (12, 10, 12) and pAA = (12, 7, 15). The Gini coefficient of the

opportunity distribution is 0.31 for pDA, 0.16 for pAA and 0.04 for pEOp. The compari-

son in terms of equality of opportunity is neat, revealing that Deferred Acceptance does

not guarantee distributional fairness. It is interesting to also notice how, because of the

focus on a single group, the affirmative action policy, in this example, puts the burden

of fairness also on the second group who is not as advantaged as the third one. This

consequence may be normatively unappealing.12 By giving importance to all groups,

the opportunity egalitarian approach we implement in this paper tries to also limit this

last issue.

12See also Students for Fair Admissions, Inc. v. President and Fellows of Harvard College (Docket
20–1199), for a recent real life example.
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Appendix B Minimizing between group inequality

In this appendix, we discuss an alternative fairness axiom. Following Van de gaer (1993),

part of the literature has converged on the idea that types should be ordered according

to their observed opportunities. In other words, a type t is more advantaged that t′ if

ū (t, µ) > ū (t′, µ), we will call this the endogenous order. The use of an endogenous

order is in line with a broader idea of equality between groups which is relevant in many

economic contexts, hence worth of our interest.

The following axiom formalizes the fairness requirement based on the endogenous

type order.

Axiom 5 (Global group egalitarian). There is no other assignment µ′ ∈ M such that∑|T |
j,k=1 |ū (tj , µ

′)− ū (tk, µ
′)| is strictly lower.

While it is clear that Axiom 1 is not compatible with Axiom 5, the following lemma

identifies sufficient conditions for the existence of an assignment that satisfies them both.

Lemma 5. Let I be such that: (i) |t| = |t′| for any t, t′ ∈ T , and (ii) there exists

zs ∈ N++ such that qs = zs|T | for all s ∈ S. If U : I × S → R is such that, for all

i, i′ ∈ I and s ∈ S, U (i, s) = U (i′, s), then there always exist an assignment µ ∈ M
that satisfies Axiom 1 and 5.

Intuitively, condition (ii) in Lemma 5 ensures that each school can guarantee an

equal representation of types. Therefore, if one fills up schools, starting with the one of

highest match quality, and ensuring equal representation, the final allocation will satisfy

both Axiom 1 and 5. Once again, though, there is no guarantee that the resulting

assignment will also be stable.

Finding a stable allocation that satisfies Axiom 5 can also be written as a Linear

Programming. From the one in Section 3, it is sufficient to substitute

min

|T |∑
j,k=1

∣∣∣∣∣∣
∑

i∈tj ,s∈S

1

|tj |
U(i, s)x(i,s) −

∑
i∈tk,s∈S

1

|tk|
U(i, s)x(i,s)

∣∣∣∣∣∣
as objective function.

Appendix C Linear programming for a fair stable al-

location

In this appendix, we provide additional details on the linear programming formulation

to find a stable allocation satisfying Strong Fairness. This formulation is provided by

Bäıou & Balinski (2000).

A school choice graph G = (V,E) is a directed graph. The set of vertices is composed

of mutually acceptable school-student pairs; in our case V = I × S. There is an edge

from v = (i, s) to v′ = (i′, s′), e = (v, v′) ∈ E, if either i = i′ and s′Pis or if s = s′
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and i′ �s i. The following example represents a school choice graph of an instance:

I = {i1, i2, i3}, S = {s1, s2, s3}, with preferences and priority rankings

Pi1 Pi2 Pi3

s3 s1 s1

s2 s3 s2

s1 s2 s3

s1 s2 s3

i3 i1 i1

i2 i3 i2

i1 i2 i3

i1

i2

i3

s1 s2 s3

Figure 2: The graph G = (V,E) of a school choice problem

On the graph above, the arcs implied by transitivity are omitted. For example, on

the graph, it is obvious that s3Pi1s1.

A vertex v′ is a successor of another vertex v if there is an edge from v to v′, i.e.

e = (v, v′) ∈ E. For example on the graph above, (s2, i1) and (s1, i2) are the successors

of (s1, i1). Let V + be the set of all vertices v = (s, i) ∈ V that have at least qs − 1

successors such that for each successor v′ = (s′, i′) of v = (s, i), s = s′. V − is the set of

all other vertices, i.e. V − = V \ V +.

For each school s ∈ S, a shaft of s ∈ S consists of a vertex (i, s) ∈ V + which is

the base, and all of its successors in V +. For each school, there may exist multiple

student-school pairs in V + but only one shaft, which we denote S(i, s) to highlight that

(i, s) ∈ V + is the base.

A tooth T of (i, s) ∈ V - written T (i, s) - consists of the vertex (i, s) which is the

source, and all of its successors (i′, s′) such that i = i′.

A comb C of s ∈ S is the union of its shaft S(i, s) and exactly qs teeth of (i′, s) ∈
S(i, s), including T (i, s). It is written as C(i, s). The teeth are decided by the priority

ranking of s. Hence if T (i′′, s) ∈ C(i, s), then any teeth T (i′, s) such that i′ �s i′′ are

also in C(i, s). The set of all combs of s is Cs.
The fourth condition of LP in Section 3:∑

(i′,s)∈C(i,s)

x(i′,s) ≥ qs ∀s ∈ S, ∀C(i, s) ∈ Cs

checks that each comb of s contains at least qs (s, i) vertices such that µ(i) = s or

x(i,s) = 1. As shown in Theorem 3 of Bäıou & Balinski (2000), this condition is necessary

and sufficient for the assignment to be stable.
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C.1 Proof of Proposition 1

Assume that µ ∈M satisfies Strong Fairness. By Bäıou & Balinski (2000), the incidence

vector of µ, xµ, satisfies three constraints of LP-1. We need to show that

|T |∑
m=1

u(tm, µ)Ū |T |−m ≥
|T |∑
m=1

u(tm, µ
′)Ū |T |−m ∀µ′ ∈M (3)

We proceed by induction. Let us first prove that if u(t1, µ) > u(t1, µ
′), then (3) holds.

Observe that the maximum value of u(tm, µ
′) is Ū for any m ∈ {2, . . . , |T |}. Hence,

Ū

(
Ū |T |−1 − 1

Ū − 1

)
= sup

|T |∑
m=2

u(tm, µ
′)Ū |T |−m

Let U be the minimum value on U , then

U

(
Ū |T |−1 − 1

Ū − 1

)
= inf

|T |∑
m=2

u(tm, µ)Ū |T |−m

Suppose, by contradiction, that (3) is false so that

u(t1, µ)Ū |T |−1 + U

(
Ū |T |−1 − 1

Ū − 1

)
< u(t1, µ

′)Ū |T |−1 + Ū

(
Ū |T |−1 − 1

Ū − 1

)
.

We then have,

(u(t1, µ)− u(t1, µ
′))
[
Ū |T | − Ū |T |−1

]
< (Ū − U)

[
Ū |T |−1 − 1

]
which, since u(t1, µ)− u(t1, µ

′) ≥ 1, leads us to

Ū |T | − Ū |T |−1 < (Ū − U)
[
Ū |T |−1 − 1

]

Ū |T |−1 (U − 1) < U − Ū

Ū |T |−1 (U − 1) < 0

A contradiction, since 1 ≤ U ≤ Ū .

Now, we assume that the statement is true for the case n = k. We want to show

that it holds for n = k + 1.

Let u(tn, µ) = u(tn, µ
′) for n = 1, .., k and assume u(tk+1, µ) > u(tk+1, µ

′). We need

to show that (3) holds. Observe that,

Ū

(
Ū |T |−k−1 − 1

Ū − 1

)
= sup

|T |∑
m=k+2

u(tm, µ
′)Ū |T |−m
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and

U

(
Ū |T |−k−1 − 1

Ū − 1

)
= inf

|T |∑
m=k+2

u(tm, µ)Ū |T |−m

By contradiction, assume that (3) is false, so that

u(tk+1, µ)Ū |T |−k−1 + U

(
Ū |T |−k−1 − 1

Ū − 1

)
< u(tk+1, µ

′)Ū |T |−k−1 + Ū

(
Ū |T |−k−1 − 1

Ū − 1

)
the same algebraic operations lead to the desired contradiction.

Assume now that (3) holds, we want to show that µ ∈ M satisfies Strong Fairness.

By contradiction, assume that there exist µ′ ∈M and 1 ≤ k ≤ |T | such that u(tj , µ) =

u(tj , µ
′) for all j < k and u(tk, µ) < u(tk, µ

′). We can rewrite (3) as

k−1∑
m=1

u(tm, µ)Ū |T |−m + u(tk, µ)Ū |T |−k +

|T |∑
m=k+1

u(tm, µ)Ū |T |−m ≥

k−1∑
m=1

u(tm, µ
′)Ū |T |−m + u(tk, µ

′)Ū |T |−k +

|T |∑
m=k+1

u(tm, µ
′)Ū |T |−m (4)

which implies

(u(tk, µ
′)− u(tk, µ)) Ū |T |−k ≤

|T |∑
m=k+1

(u(tm, µ)− u(tm, µ
′)) Ū |T |−m

the easiest way for the above inequality to hold is when u(tk, µ
′)− u(tk, µ) = 1 and

all differences in the right hand side correspond to Ū − U . Hence, it must be

Ū |T |−k ≤
(
Ū − U

)( Ū |T |−k − 1

Ū − 1

)
which leads to

(U − 1) Ū |T |−k ≤ U − Ū

the desired contradiction.

Appendix D Example of rotation poset

In this appendix we adapt an example from Irving et al. (1987) to our school choice

setting.

Let there be 8 students and 8 schools, each with capacity of one. Let the preferences

and priority rankings be as follows.
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i1 : s3, s1, s5, s7, s4, s2, s8, s6 s1 : i4, i3, i8, i1, i2, i5, i7, i6

i2 : s6, s1, s3, s4, s8, s7, s5, s2 s2 : i3, i7, i5, i8, i6, i4, i1, i2

i3 : s7, s4, s3, s6, s5, s1, s2, s8 s3 : i7, i5, i8, i3, i6, i2, i1, i4

i4 : s5, s3, s8, s2, s6, s1, s4, s7 s4 : i6, i4, i2, i7, i3, i1, i5, i8

i5 : s4, s1, s2, s8, s7, s3, s6, s5 s5 : i8, i7, i1, i5, i6, i4, i3, i2

i6 : s6, s2, s5, s7, s8, s4, s3, s1 s6 : i5, i4, i7, i6, i2, i8, i3, i1

i7 : s7, s8, s1, s6, s2, s3, s4, s5 s7 : i1, i4, i5, i6, i2, i8, i3, i7

i8 : s2, s6, s7, s1, s8, s3, s4, s5 s8 : i2, i5, i4, i3, i7, i8, i1, i6

Student proposing and school proposing DA give:

µI :
s1 s2 s3 s4 s5 s6 s7 s8

i2 i8 i1 i5 i4 i6 i3 i7

µS :
s1 s2 s3 s4 s5 s6 s7 s8

i4 i3 i7 i6 i8 i5 i1 i2

Let us start by pruning preferences and priority rankings. For example, take student

2. He is matched with s1 in µI so there is no stable matching in which he will be assigned

to a school he prefers to s1. Therefore, we can remove s6 from his preferences. At the

same time, µS(i2) = s8 so there is no stable assignment in which student 2 attends

schools 7, 5 or 2, which are all below s8 in i2’s preference ranking. Hence, the pruned

preferences for student 2 do not include schools 6,7,5 and 2. Vice versa, we should also

remove student 2 from the priority ranking of these schools.

Consider now school 1. As all the other schools in this instance, it obtains its

favourite student under µS , so no student should be removed from its ranking according

to this criterion. However, under student proposing DA, µI(s1) = i2 so students 5, 7

and 6, which are all below student 2 in s1’s priority should be removed. Vice versa, we

should remove school 1 from the preference list of these students.

By repeating the reasoning above for all students and schools, we get to the following

pruned preferences:

i1 : s3, s1, s5, s7, •, •, •, • s1 : i4, i3, i8, i1, i2, •, •, •
i2 : •, s1, s3, s4, s8, •, •, • s2 : i3, i7, i5, i8, •, •, •, •
i3 : s7, s4, s3, •, •, s1, s2, • s3 : i7, i5, i8, i3, •, i2, i1, •
i4 : s5, •, s8, •, s6, s1, •, • s4 : i6, •, i2, •, i3, •, i5, •
i5 : s4, •, s2, s8, s7, s3, s6, • s5 : i8, •, i1, •, i6, i4, •, •
i6 : s6, •, s5, s7, •, s4, •, • s6 : i5, i4, i7, i6, •, •, •, •
i7 : •, s8, •, s6, s2, s3, •, • s7 : i1, •, i5, i6, •, i8, i3, •
i8 : s2, •, s7, s1, •, s3, •, s5 s8 : i2, i5, i4, •, i7, •, •, •

To construct the rotation poset, we start with the graph GµI
whose vertices are

pairs (i, s) such that µI(i) = s and i is the worst student in s’s priority ranking. In this

example, the vertices coincides with all student-school pairs defined by µI . The directed
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edges are drawn from a vertex (i, s) to a vertex (i′, s′) where s′ follows s in student i’s

pruned preferences. The graph of student proposing DA is the following.

(i2, s1) (i8, s2) (i1, s3) (i5, s4) (i4, s5) (i6, s6) (i3, s7) (i7, s8)

We can see that three rotations are exposed:

ρ1 = 〈(i2, s1), (i1, s3)〉
ρ2 = 〈(i8, s2), (i3, s7), (i5, s4)〉
ρ3 = 〈(i4, s5), (i7, s8), (i6, s6)〉
After eliminating ρ1, we obtain

µI \ ρ1 :
s1 s2 s3 s4 s5 s6 s7 s8

i1 i8 i2 i5 i4 i6 i3 i7

We can now prune again preferences and priority rankings. Remove s1 (resp. s3),

and any other school above it, in the preferences of i2 (resp. i1). Vice versa, remove

i2 (resp. i1), and any other student below her, in the priority ranking of s1 (resp. s3).

Finally, check that all remaining pairs are mutually acceptable.

On the graph of µI \ ρ1, we still expose ρ2, ρ3 but there is no new exposed rotation.

Hence, there is no direct successor of ρ1. If we eliminate ρ2 we get

µI \ {ρ1, ρ2} :
s1 s2 s3 s4 s5 s6 s7 s8

i1 i5 i2 i3 i4 i6 i8 i7

and on GµI\{ρ1,ρ2} we expose a new rotation: ρ4 = 〈(i2, s3), (i3, s4)〉. This rotation

is a successor of ρ1 and ρ2 together.

Let us continue with eliminating ρ4.

µI \ {ρ1, ρ2, ρ4} :
s1 s2 s3 s4 s5 s6 s7 s8

i1 i5 i3 i2 i4 i6 i8 i7

After pruning again, observe that on the graph of µI \ {ρ1, ρ2, ρ4}, the only exposed

rotation is ρ3. We should then eliminate it to get:

µI \ {ρ1, ρ2, ρ3ρ4} :
s1 s2 s3 s4 s5 s6 s7 s8

i1 i5 i3 i2 i6 i7 i8 i4

on which graph we expose two rotations:

ρ5 = 〈(i1, s1), (i6, s5), (i8, s7)〉

29

                            31 / 33



ρ6 = 〈(i5, s2), (i4, s8), (i7, s6)〉
Observe that to expose ρ6, which involves schools 2, 8 and 6 it is not necessary to

eliminate ρ1 which concerns only schools 1 and 3. Therefore, ρ6 is a successor of ρ2 and ρ3

alone. Differently, ρ5 is a successor of ρ1, ρ2, ρ3. The other rotations that can be exposed

after eliminating only ρ4, ρ5 or ρ4, ρ5, ρ6 are, respectively, ρ7 = 〈(i8, s1), (i3, s3)〉 and

ρ8 = 〈(i2, s4), (i5, s8), (i6, s7)〉. The last two rotations are ρ9 = 〈(i8, s3), (i1, s5), (i5, s7)〉
and ρ10 = 〈(i3, s1), (i7, s2), (i5, s3), (i4, s6)〉. Where ρ9 is exposed after eliminating ρ7

and ρ8, and ρ10 is a the successor of ρ9. After eliminating ρ10 we obtain school proposing

DA - i. e. µI \ {ρj}10
j=1 = µS .

The consequent rotation poset is

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

ρ8

ρ9 ρ10

Appendix E Network flow of rotations

To find the optimal closed subset of rotations based on the method of Picard (1976),

define the network flow of rotations. This is a directed weighted graph GΠ = (VΠ, EΠ)

where the set of vertices is composed of a source vertex, B, all the rotations and a

terminal vertex, T , i.e. VΠ ≡ B ∪Π (I, µ) ∪ T . There is a directed edge from B to each

r ∈ Π (I, µ) if ω(r) < 0 and the weight of the edge is |ω(r)|, i.e. e = (B, r) ∈ EΠ if

ω(r) < 0 and w(e) = |ω(r)|. There is a directed edge from ρ ∈ Π (I, µ) to r ∈ Π (I, µ)

if r is the successor of ρ and the weight of the edge is infinity, i.e. for ρ, r ∈ Π (I, µ),

e = (ρ, r) ∈ EΠ if ρ < r and w(e) = ∞. There is directed edge from each rotation

r ∈ Π (I, µ) to the terminal vertex T if ω(r) > 0 and the weight of the edge is the

weight of the rotation, i.e. e = (r, T ) ∈ EΠ if ω(r) > 0 and w(e) = ω(r).

A (B − T ) cut of GΠ is a partitioning of the set of vertices on the flow network into

two sets, B and B, such that B ∈ B, T ∈ B, B ∪B = VΠ and B ∩B = ∅. The capacity

of a (B − T ) cut, denoted by c(B,B), is the sum of the weights of the edges which go

from the vertices in B to the vertices in B. Pictorially, if the partition is a line that

divides the graph of the flow network in two, the capacity is given by the sum of the

weight of the edges that intersect this line in the direction from the source to the sink.

We call minimum (B − T ) the cut with minimal capacity among all possible cuts.

In our flow network, we can think of the rotations (the vertices) as stations that have

the capacity of letting a certain flow passing through. This capacity is measured by the

30

                            32 / 33



absolute value of the weight and the sign of the weight determines the direction the flow

is sent toward: either toward the beginning B or toward the terminal T . A maximum

flow algorithm, for example Ford-Fulkerson algorithm (Ford & Fulkerson, 1956), would

find the maximum flow this network can carry from the source vertex to the terminal

vertex. Because of the duality between maximum flow and minimum cut, the maximum

flow can be found with a minimum cut algorithm and this algorithm would give us the

set of vertices which will carry the maximum flow. Since the capacity of each vertex in

our flow network of rotations is the added value of this rotation to the social welfare

function if it is eliminated, a minimum (B − T ) cut in our flow network will give us the

set of rotations we need to eliminate, consecutively, to find the stable matching that

maximizes social welfare.
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