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Abstract 

Most of the data available for measuring capabilities or dimensions of poverty is either 
ordinal or categorical. However, the majority of the indices introduced for the 
assessment of multidimensional poverty behave well only with cardinal variables. The 
counting approach introduced by Atkinson (2003) concentrates on the number of 
dimensions in which each person is deprived, and is an appropriate procedure that 
deals well with ordinal and categorical variables. A method to identify the poor and a 
number of poverty indices has been proposed taking this framework into account. 
However, the implementation of this methodology involves the choice of a minimum 
number of deprivations required in order to be identified as poor. This cut-off adds 
arbitrariness to poverty comparisons. The aim of this paper is two-fold. Firstly, we 
explore properties which allow us to characterize the identification method as the 
most appropriate procedure to identify the poor in a multidimensional setting. Then 
the paper examines dominance conditions in order to guarantee unanimous poverty 
rankings in a counting framework. Our conditions are based on simple graphical 
devices that provide a tool for checking the robustness of poverty rankings to changes 
in the identification cut-off, and also for checking unanimous orderings in a wide set 
of multidimensional poverty indices that suit ordinal and categorical data. 
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1. INTRODUCTION 

 In recent years there has been considerable agreement that poverty is a 

multidimensional phenomenon and great efforts have been made from both a theoretical and 

an empirical point of view, trying to assess multidimensional poverty.2 However, since most 

of the data available to measure capabilities or dimensions of poverty is either ordinal or 

categorical, only indices that behave well with this sort of variable should be used in 

empirical applications. 

The counting approach introduced by Atkinson (2003) focuses on the number of 

dimensions in which each person is deprived, and is an appropriate procedure that deals well 

with ordinal and categorical variables. Based on this framework there are two recent 

contributions.  

On the one hand, Alkire and Foster (2008) propose a new framework for measuring 

multidimensional poverty that includes an identification procedure and a way of aggregation. 

The identification step extends the traditional union and intersection approaches and 

incorporates two cut-offs. The first has to do with the traditional identification of the poor 

within each dimension using a dimension-specific poverty line. In the second step, a counting 

approach is used to identify the poor people using a threshold of the number of dimensions in 

which a person should be deprived in order to be identified as multidimensional poor. 

Actually Alkire and Foster (2008) have explicitly formulated and analyzed this identification 

procedure although similar methods had already been used in the literature, for instance Mack 

and Lindsay (1985), Gordon et al. (2003).A characterization of this identification step is 

provided in Section 2.  

As regards the aggregation step, Alkire and Foster propose the Foster-Greer-Thobercke 

measures (Foster et al. (1984)) appropriately adjusted to the identification procedure. 

Specifically, the first of their measures, the adjusted headcount ratio, defined as the average 

of the number of deprivations suffered by the poor, is well suited for working with ordinal 

data. It also fulfils the dimensional monotonicity property, which means that it will increase if 

a person already identified as poor becomes deprived in an additional dimension. 

The second contribution based on a counting approach is Bossert et al. (2009) that 

obtain a class of counting measures and generalizes Alkire and Foster indices. 

                                                 
2 A comprehensive survey on multidimensional poverty can be found in Chakravarty (2009). 

 2



In general, the choice of either the identification cut-offs, or the indices, adds 

arbitrariness to poverty comparisons, and different selections can lead to contradictory results. 

For this reason it may be of interest to investigate conditions to guarantee that comparisons be 

unanimous to the different choices.3 There exists a branch of the literature devoted to 

establishing dominance criteria which provide unanimous orderings when comparisons are 

made at a variety of poverty thresholds and measures. Zheng (2000) provides a 

comprehensive survey of dominance conditions in the poverty unidimensional field. In this 

paper, we take this literature as a starting point, and more specifically the basic papers by 

Shorrocks (1983), Foster (1985) and Foster and Shorrocks (1988a, 1988b). In particular we 

investigate circumstances in which two vectors, which represent the number of deprivations 

felt by each person, may be unanimously ranked regardless of the identification cut-off and of 

the poverty measure. In Section 3 we will show that if the ranking provided by the 

multidimensional headcount ratio is unambiguous over all the admissible identification 

thresholds, then agreement is guaranteed over all counting measures that satisfy monotonicity. 

A similar result is obtained with respect to the adjusted headcount ratio: rankings provided by 

this latter index are equivalent to agreement over all counting measures that fulfill 

monotonicity and distribution sensitivity. It is also showed that these orderings coincide with 

first and second degree stochastic dominance respectively. These results are by no means 

surprising. Atkinson (1987) derives a similar conclusion as regard the headcount ratio in the 

unidimensional poverty field. In turn, Foster and Shorrocks (1988a, 1988b) characterize the 

poverty orderings obtained from the Foster-Greer-Thobercke measures (Foster et al. (1984)), 

and establish the equivalence between poverty rankings and stochastic dominance. 

The implementation of these conditions is based on two different types of curves we 

call dimension deprivation curves, introduced in Section 3. The first one, which we call the 

FD curve, represents the multidimensional headcount ratio for all the admissible cut-offs.4 

The second type of curve, henceforth SD curves, represent in the same picture the headcount 

                                                 
3 The robustness of poverty measures as regards the number of deprivations chosen to identify the poor has 
already been addressed by Batana (2008) and Subramanian (2009). The former proposes to follow the procedure 
introduced by Davidson and Duclos (2006) and already used by Batana and Duclos (2008), to check the 
robustness of the adjusted headcount ratio. They suggest a statistical dominance test based on the empirical 
likelihood ratio. In turn, S. Subramanian introduces the deprivation distribution profile, a graphical device to 
check the robustness of the headcount ratio when different cut-offs are selected. The differences of this work 
with our paper will be discussed later. 
4 This curve is quite similar to the deprivation distribution profile proposed by Subramanian (2009), although, in 
our opinion, two main differences can be pointed out. On the one hand and following the traditional procedure, 
since the distributions we are concerned about are discontinuous, we propose to represent this cumulative curve 
as a step function which is right-continuous. On the other hand, to our knowledge, S. Subramanian does not 
derive dominance conditions in his paper. 
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ratio, the adjusted headcount ratio and the average deprivation share according to Alkire and 

Foster (2008)’s proposal. 

Since the Lorenz curve was introduced in the literature, a number of cumulative curves 

have been widely used to check unanimous orderings in the inequality, poverty, and 

polarization fields.5 In this connection, we will show that the curves proposed in this paper 

become a powerful tool for checking unanimous orderings according to a wide class of 

counting measures. They also avoid the choice of an arbitrary identification cut-off and offer a 

useful way to determine the bounds of the number of dimensions for which multidimensional 

comparisons are robust. As the multidimensional headcount ratio and the adjusted headcount 

ratio behave particularly well with ordinal and categorical data, the dimension deprivation 

curves play a key role in making poverty comparisons when data is ordinal. The paper 

finishes with some concluding remarks.  

 

 

2. A COUNTING POVERTY APPROACH 

1.1. Notation and basic definitions 

 We consider a population of  individuals endowed with a bundle of  

attributes considered as relevant to measure poverty. The number of dimensions is given and 

fixed. In a counting approach, poverty is measured taking into consideration the number of 

dimensions in which people are deprived. In this framework it is implicitly assumed that 

comparing each person’s achievements with the respective dimension poverty lines, 

determines whether the individual is deprived or not in each attribute. We assume that the 

dimensions are represented by binary variables and characteristics of individual i are 

identified by a deprivation vector , whose typical component j is defined by 

n 2≥ 2d ≥

{ }0,1 d
ig ∈ 1ijg =  

when individual i is deprived in attribute j and 0ijg =  otherwise. For simplicity we assume 

that all the dimensions are equally weighted, although similar conclusions may be derived if 

different fixed weights are attached to the different dimensions.  

                                                 
5 Among them the curves proposed by Foster and Shorrocks (1988a, 1988b), the TIP curves introduced by 
Jenkins and Lambert (1997), the polarization curve introduced by Foster and Wolfson (1992) and more recently 
the proposal of Shorrocks (2009) to derive unemployment indices. 
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Let’s denote by { }0,1,..,ic d∈ C=

ijg

 the number of dimensions in which person i is 

deprived, that is, 
1i j d

c
≤ ≤

= ∑ . The vector ( )1,...,
n

nc c c C= ∈  is referred to as the vector of 

deprivation counts. This vector plays an important role in the poverty measurement when 

ordinal data are involved. In fact this vector is invariant if the achievement levels and the 

poverty lines are transformed under the same monotonic transformations, and this is a crucial 

property when the achievements or capabilities are measured with ordinal variables. We will 

denote by c  the permutation of c in which the number of deprived dimensions have been 

arranged in decreasing order, that is, 1i ic c +≥  for 1,...,i n= . Hence people are ranked from the 

most deprived to the least. Let  be the set of all admissible vectors of deprivation 

counts.  

1

n

n

G C
≥

=∪

We will say that the vector c’ is obtained from the vector c by a permutation if 'c c= ; 

by a replication if ; by an increment if  for some i and (' , ,...,c c c c= ) i'ic c> ' j jc c=  for all 

; and by a deprived dimension (regressive) transfer if , ; 

 for all . 

j i≠ 'i i jc c c> > ' 'i j i jc c c c+ = +

k'kc c= ,k i j≠

 

2.2. The identification of the poor 

 Since Sen (1976) any poverty measure should consist of a method to identify the poor 

and an aggregative measure. 

Two main methods have been used in the identification step in the multidimensional 

setting, referred to as the ‘union’ and the ‘intersection’ approaches respectively. Whereas the 

union procedure identifies the poor as someone who is deprived in at least one dimension, the 

intersection definition requires a poor person to be deprived in all dimensions. These methods 

present well known drawbacks when the number of poverty dimensions is great. Whereas 

“almost nobody” is identified as poor with the intersection approach, “almost everybody” is 

poor with the union identification. 

There is an intermediate procedure, formalized by Alkire and Foster (2008), which 

proposes to identify a person as poor if they are deprived in at least k dimensions. According 

to this method, person i is identified as poor if , i.e., the number of dimensions in which 

they are deprived is at least k; and person i is non-poor otherwise, that is, if . For 

ic k≥

ic k< 1k = , 
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this method coincides with the union approach, whereas for k d= , it is equivalent to the 

intersection approach. Following Alkire and Foster, we will use kρ  to denote this procedure. 

In this framework the identification function is assumed to be the same for all the individuals. 

The kρ  method is simple and intuitive, and it may be of interest to examine the 

conditions which lead to kρ  in a multidimensional setting. 

For doing so, first of all we will assume that the function that identifies the poor satisfies 

a property of dichotomization, that ensures that identifying a person as poor depends only on 

each individual’s deprivations. This property is formalized as follows: 

Dichotomization: An identification procedure ρ  is a dichotomized identification 

function if  links gi, the vector of deprivations of individual i, with an 

indicator variable such that 

{ } { }: 0,1 0,1dρ →

( ) 1igρ =  if person i is identified as poor and ( ) 0igρ =  if 

person i is not poor. 

In addition we will introduce a property for a dichotomized identification function. We 

think that a reasonable assumption is to require that if a person is considered as poor 

according to an identification method, then any other person deprived in equal or more 

dimensions should also be considered as poor. We call this property Poverty Consistency and 

it is formulated as follows: 

Poverty Consistency. Let ρ be a dichotomized identification function. We say that ρ 

satisfies the poverty consistency property if given a person i with  then 

 for all person i’ such that 

( ) 1igρ =

( )' 1igρ = 'i ic c≤ . 

The following proposition characterizes the kρ  identification method.  

 

Proposition 1. A non trivial dichotomized identification function ρ  fulfils the poverty 

consistency property if and only if there exists some { }1,...,k∈ d  such that  if  

and 

( ) 1igρ = ic k≥

( ) 0igρ =  otherwise.  

Proof. Since ρ  is a non trivial identification method, there exists a person i such that 

. Let be ( ) 1igρ = ( ){ }' 1,..., ' 'min / 1i n i ik c gρ== = . For definition ( )' 0igρ =  if  and for 

poverty consistency, 

'ic k<

( )' 1igρ =  if . The sufficiency of the proof is clear. Q.E.D. 'ic k≥

 6



As a consequence of this proposition, the only dichotomized identification method that 

is poverty consistent is kρ  for some { }1,...,k∈ d . Throughout this paper the poor are 

identified according to a kρ  procedure. 

Let’s denote by  and  respectively, the set and number of poor identified using the 

dimension cut-off k. For each vector c of deprivation counts, we define the censored vector of 

deprivation counts, denoted by 

kQ kq

( )c k , as follows: ( )i ic k c=  if , and  if ic k≥ ( ) 0ic k = ic k< .  

 

2.3. Aggregating deprivations with a counting measure 

 The second problem in the poverty measurement is the aggregation of the deprivation of 

the poor. In what follows, a counting poverty measure  is a non-constant function whose 

typical image, denoted by , represents the level of poverty in a society with a vector of 

deprivation counts c and where the poor are identified according to a 

P

( )kP c

kρ  procedure. The 

following four properties are the counterparts for a counting measure of the basic properties 

assumed in the poverty field:  

Poverty Focus (PF): For all ,  remains unchanged if the number of deprived 

dimensions of a non-poor person decreases.  

:1,...,k d kP

Dimensional Monotonicity (MON): For all , :1,...,k d ( ) ( )'k kP c P c<  if c’ is obtained 

from c by an increment of a poor person.  

Symmetry (SYM): For all , :1,...,k d ( ) ( )'k kP c P c=  if c’ is obtained from c by a 

permutation. 

Replication Invariance (RI): For all , :1,...,k d ( ) ( )'k kP c P c=  if c’ is obtained from c by 

a replication.  

Since poverty measurement is concerned with the deprivations of the poor people, the 

first two properties, postulated by Sen (1976) in the unidimensional setting, are considered as 

basic axioms for a poverty measure. Thus, PF requires that a poverty index should not depend 

on the non poor people’s deprivations, and MON demands that poverty should increase if the 

number of deprived dimensions suffered by a poor person increases. It may be worth noting 

that PF ensures that ( ) (( )k kP c P c k= ) . 

 7



SYM and RI are also standard requirements for a poverty measure. SYM establishes 

that no other characteristic apart from the number of dimensions in which a person is deprived 

matters in defining a counting poverty index. In turn, RI allows us to compare populations of 

different sizes. 

According to Sen (1976), a poverty measure should be sensitive to inequality among the 

poor, then the counterpart of the Pigou-Dalton transfer principle for a counting measure may 

be introduced as follows: 

Transfer Sensitivity (TS): ( ) ( )'k kP c P c<  if c’ is obtained from c by a deprived 

dimension transfer between two people that are poor before and after the transfer.  

We define the following two inclusive classes of counting poverty measures: 

{ }/ , , , ,P counting poverty measure P satisfies PF MON DDC SYM and RI=1P  

{ }/ , , , ,P counting poverty measure P satisfies PF MON DDC SYM RI and TS=2P  

Clearly , and as will be shown, the inclusion is strict. ⊂2P P1

The first counting poverty measure introduced in the literature is the multidimensional 

headcount ratio, denoted by H, which is the percentage of poor people in the society. In other 

words, for each k identification cut-off, k kH q n=  is the percentage of the population 

deprived in at least k dimensions. There are some advantages to this index, usually used to 

measure the incidence of poverty. One of them is that it can be used with ordinal and 

categorical data. There are also some shortcomings, since it is able to capture neither the 

intensity nor the inequality among the poor and violates MON, that is, it does not change if a 

person already identified as poor becomes deprived in an additional dimension in which the 

person was not poor previously. 

The adjusted headcount ratio, M, introduced by Alkire and Foster (2008) is defined as 

the average of the number of deprivations suffered by the poor, that is, ( ) ( )1 ii n
k

c k
M c

nd
≤ ≤= ∑ . 

This index overcomes the drawbacks of the headcount ratio since it satisfies MON. However 

M does not belong to class , since although it satisfies a weaker version of TS, it violates 

TS as proposed in this paper. 

2P

It will be useful to note that ( )kM c  can be decomposed in the following way 
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(1) ( ) ( )( ) ( )1 1
1 1 ...k d d d k k ( )M c d H H H d H H k
d − += + − − + + −⎡ ⎤⎣ ⎦  

More information about poverty can be incorporated using the average deprivation 

share across the poor denoted by A, also introduced by Alkire and Foster (2008), which is 

defined as the mean among the poor, of the number of deprivations suffered by the poor, that 

is, 
( )1 ii n

k
k

c k
A

q d
≤ ≤= ∑ . This index captures the intensity of poverty. Furthermore, M can be 

computed as the product of the multidimensional headcount ratio and the average deprivation 

share across the poor. 

 

 

3. COUNTING POVERTY ORDERINGS 

 This section is concerned with how two vectors of deprivation counts are ranked in 

order to evaluate whether poverty is higher in one society than in another. Poverty rankings 

may be reversed depending on the identification threshold, or on the measure selected. Thus, 

in order to avoid contradictory results, poverty orderings require unanimous rankings for a set 

of identification cut-offs, or a class of poverty measures. As it is impossible to check 

unanimity for infinite pairwise comparisons, ordering conditions are derived to characterize 

unanimous agreement. Following the existing literature, given a counting poverty measure P 

we define the partial ordering with respect to P, denoted by , in the set of vectors of 

deprivation counts, by the rule6  

P≺

Pc' c≺  if and only if ( ) ( )k kP c' P c≥  for all . :1,...,k d

In this section we will examine the partial poverty orderings with respect to the 

multidimensional headcount ratio, H, and the adjusted headcount ratio, M. 

 

                                                 
6 We follow Atkinson (1987) and adopt the weak definition of a partial ordering. Although not all the results 
derived in this paper hold for the other two levels (the semi-strict and the strict ones) similar conditions could be 
also obtained in these two cases. 
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2.1. Poverty ordering with respect to the multidimensional headcount ratio, H, and the FD-

curve 

 As already mentioned, given a cut-off of the number of dimensions, k, the 

multidimensional headcount ratio, , gauges the percentage of people deprived in at least k 

dimensions. For any vector of deprivation counts it is possible to consider the graph of 

kH

H  as 

a function of the cut-off of the number of dimensions, with the number of dimensions ranked 

in decreasing order. We will refer to this curve as the FD curve associated with the vector of 

deprivation counts c. For any vector of deprivation counts c, the ordinates of the FD curve are 

computed as follows: 

( ); kFD c d k Hθ− + = , 1,...,k d= , [ )0,1θ ∈  

The following example helps to clarify this. Let’s consider the vector of deprivation 

counts  in a society of 10 individuals endowed with 4 attributes. The 

FS curve for this vector is displayed in Figure 1. 

(4,3,3,2,2,1,1,1,0,0c = )

 

Figure 1. Plotting the identification cut-offs and the headcount ratio: the FD curve. 

4 123

H4

H3

H2

H1

 

Some interesting properties of this curve may be mentioned. The FS curve is an 

increasing step function which is right-continuous. The horizontal axis displays the 

identification cut-offs ranked in decreasing order, and in the vertical axis, by definition, the 

multidimensional headcount ratio, , is recovered. Two limiting curves correspond with the 

extreme situations: if nobody is deprived, the curve coincides with the horizontal axis; 

kH
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whereas, if everybody is deprived in all dimensions, the curve becomes the parallel line to the 

horizontal axis through the point .  ( )0,1

It is clear from the graph that, for two vector of deprivation counts with the same 

population size, , if , that is, if , ' nc c C∈ Hc' c≺ ( ) ( )k kH c' H c≥  for all , then the FD 

curve of c must be below or to the left of the FD curve of c’. And the reverse is also true: if 

the FD curve of c is below or to the left of the FD curve of c’ then  for all 

, and . We get the following proposition:  

:1,...,k d

d

( ) ( )k kH c' H c≥

:1,...,k Hc' c≺

 

Proposition 2. For any  vectors of deprivation counts, the following statements are 

equivalent: 

, ' nc c C∈

i) ( ) ( )FD c'; p FD c; p≥  for all [ ]p 0,1∈ ; 

ii)  for all ; ( ) ( )'k kH c H c≤ 1,...,k d=

iii)  for all 'ic c≤ i 1,...,i n= ; 

iv) c’ may be obtained from c by a finite sequence of increments; 

v)  for all continuous, increasing functions ( ) ( )'1 1ii n i n
cϕ

≤ ≤ ≤ ≤
≤∑ ∑ icϕ [ ]: 0,dϕ ⎯⎯→  

Proof. It is similar to the proof shown in Foster and Shorrocks (1988b) in Lemma 1 and 

Theorem 2.  

 

This proposition shows that when the FD curve of a vector of deprivation counts lies 

above or to the right of the curve of other with the same population size, or equivalently, 

when these two vectors can be ordered with respect to H, then one may be obtained from the 

other by a sequence of increments. Consequently, any poverty measure belonging to class P1 

will rank these two vectors exactly in the same way. Moreover, since both, H and the 

measures belonging to class P1, are replication invariant, the result also holds for vectors with 

different population sizes.  

The reverse is also true. In fact, consider the class of counting measures: 

( ) ( )(1

1, ii n
P c k c k

n
ψ

≤ ≤
= ∑ ) , with [ ]: 0,dψ ⎯⎯→  a continuous strictly increasing convex 

function. It is quite simple to show that P belongs to class P1. Given any continuous 
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increasing function [ ]: 0,dϕ ⎯⎯→  and 0ε > , then the measures 

( ) ( ) ((1

1, ii n
P c k c k

nε εψ ϕ
≤ ≤

= +∑ ))

)',

 also belong to class P1. Consequently, given two vectors 

c and c’ with , when ( ) (,P c k P c kε ε≤ 0ε →  we get statement v) in Proposition 2 and have 

the following result, that links the ordering with respect to H with first degree stochastic 

dominance: 

 

Proposition 3. For any  vectors of deprivation counts: , 'c c G∈

( ) ( )FD c'; p FD c; p≥  for all [ ]p 0,1∈  

if and only if  for all ( ) ( )'k kP c P c≥ P∈ 1P  and for all identification cut-off { }1,...,k d∈ . 

 

This proposition reveals that, although H fails to satisfy MON, the ordering with respect 

to H is equivalent to agreement over all counting measures satisfying MON. Consequently, if 

the FS curves of two vectors of deprivation counts do not intersect, then all poverty counting 

measures satisfying MON will lead to the same verdict. 

By contrast, when the curves intersect, there are two possibilities in order to obtain 

unanimous ranking: either restricting the set of measures, as shown in section 2.2, or limiting 

the admissible cut-offs, as will be developed in section 2.3.  

 

2.2. Poverty ordering with respect to the adjusted headcount ratio, M, and the SD curve 

One interesting feature of the FS curve introduced in the previous section is that, given 

a vector c and a threshold k, it is straightforward to proof from the decomposition shown in 

equation (1) that the area beneath the curve of the censored vector, ( )( )FS c k , is equal to 

. Thus, even if a conclusive poverty verdict could not be reached with the H ordering, it 

would be possible to get unanimous rankings with respect to M.  

kd M

As usual, we propose constructing the SD curve, for any vector c, plotting the headcount 

ratio against the adjusted headcount ratio, that is, pairs of points ( ),k kH M . We also plot two 

extreme points (  as the start of the curve, and )0,0 ( )11, M , as the end of the curve. Then we 
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join the dots. Figure 2 shows the SD curve associated with the vector c in the previous 

example: 

It may be worth noting that, for any vector of deprivation counts c, ranked from the 

most deprived to the least, the SD curve can equivalently be defined in the following way: for 

each integer  the ordinate of the curve is computed as the cumulative of the sum 

of the total number of deprivations experienced by the first p people divided by the total 

number of deprivations that could possibly experienced by all people. At intermediate points 

the curve is determined by linear interpolation. Thus, the ordinates of the SD curve are 

computed as follows: 

0,..., 1p n= −

( );0 0SD c =  

1

1; ii p

pSD c c
n nd ≤ ≤

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑ ,  1,...,p n=

( )11

1; i pi p

pSD c c c
n nd
θ θ +≤ ≤

+⎛ ⎞ = +⎜ ⎟
⎝ ⎠

∑ , 0,..., 1p n= − , [ ]0,1θ ∈  

 

Figure 2. Plotting the headcount ratio and the adjusted headcount ratio: the SD curve. 

0

1

0 1H4 H3 H2 H1

M4

M3

M2

M1

A1

cumulative sum of the poor deprived dimensions
divided by total deprived dimensions

cumulative population share  
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Some interesting properties of this curve may be mentioned. First of all, the ordinates of 

this curve are replication invariant, and are also invariant to permutation of c. The graph, as 

displayed in Figure 2, begins at the origin, and is a continuous non-decreasing concave 

function.  

There are two bounding curves which correspond with the extreme situations of 

minimum and maximum deprivation. If nobody is deprived, the curve coincides with the 

horizontal axis. By contrast, if everybody is deprived in all dimensions, the curve becomes the 

diagonal line.  

In general, the slope of the curve is to change d times, as many as the number of 

dimensions considered. Each point p n  at which the curvature of the curve changes, yields 

the percentage of people deprived in at least as many dimensions as person p. If we call this 

number k, we find that the adjusted headcount ratio, , is recovered in these points. In 

contrast, the vertical axis displays, by definition, the dimension adjusted headcount ratio 

kH

kM . 

Thus, the first time the slope changes corresponds to the headcount ratio according to the 

intersection procedure, . The last time, when the curve becomes horizontal, yields the 

headcount ratio as regards the union procedure, . At this point the curve reaches its 

maximum value which corresponds to the ratio between the sum of the total number of 

deprivations experienced by all the people, and the total number of deprivations that could 

possibly be experienced, that is, 

dH

1H

1M  according to Alkire and Foster (2008) designation.  

The average deprivation share across the poor, , is also represented in the graph by 

the slope of the ray from (0,0) to 

kA

( )( ),p DD p . 

The following proposition is based on the results established by Marshall and Olkin 

(1979, propositions 4.A.2 and A.B.2) for vectors with the same number of components: 

 

Proposition 4. For any  vectors of deprivation counts, the following statements are 

equivalent: 

, ' nc c C∈

i)  for all ( ) (SD c'; p SD c; p≥ ) [ ]p 0,1∈ ; 

ii) ( ) ( )'k kM c M c≤  for all 1,...,k d= ; 
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iii) '
1 1i ii p i p

c c
≤ ≤ ≤ ≤

≤∑ ∑  for all 1,...,p n= ; 

iv) c’ may be obtained from c by a finite sequence of permutations, increments and/or 

deprived dimension transfers; 

v)  for all continuous, increasing and convex functions ( ) ( )'1 1ii n i n
cϕ

≤ ≤ ≤ ≤
≤∑ ∑ icϕ

[ ]: 0,dϕ ⎯⎯→ . 

 

In this proposition it is established that when the SD curve of a vector c’ lies above the 

curve of another, c, with the same population size, or equivalently, when these two vectors 

can be ordered with respect to M, then one may be obtained from the other by a sequence of 

increments and/or permutations. Consequently, any poverty measure belonging to class P2 

will rank these two vectors in exactly the same way. In addition, as the deprivation curves are 

invariant under replication, and the same holds for any measure P∈ 2P , the result also holds 

for vectors with different population sizes. 

The reverse is also true and the proof is completely similar to the corresponding result in 

the previous section. So we get 

 

Proposition 5. For any  vectors of deprivation counts: , 'c c G∈

( ) ( )SD c'; p SD c; p≥  for all [ ]p 0,1∈  

if and only if  for all ( ) ( )'k kP c P c≥ P∈ 2P  and for all identification cut-off { }1,...,k d∈ . 

 

Then, this result reveals that although M, the dimension adjusted headcount ratio, 

violates TS, if two vectors of deprivation counts can be unanimously ranked by kM  at all cut-

offs, then all poverty counting measures satisfying TS will rank societies in the same way. 

The equivalence between the ordering with respect to M and the second degree stochastic 

dominance is also established. 
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3.3. Poverty ordering when the curves intersect.  

When the dimension deprivation curves introduced in the two previous sections 

intersect, it is still possible to establish dominance conditions by restricting the set of 

identification cut-offs. In fact, even if the curves of two vectors cross, there exists a threshold 

{ }* 1,...,k ∈ d  that corresponds with the identification cut-off after which the intersection 

occurs. In other words, k* ensures that the curves do not intersect for all  and *,...,k k d=

{ }' *,...,C k d=  becomes the relevant set for the cut-offs. A simple way to establish 

dominance conditions in these cases is to base comparisons on the censored vectors, and to 

develop the previous sections as shown in the following proposition. Taking into 

consideration the respective censored vectors, denoted by ( )*c k  and , we get the 

following proposition: 

(' *c k )

 

Proposition 6. For any  vectors of deprivation counts: , 'c c G∈

i) ( )( ) ( )( )FD c' k* ; p FD c k* ; p≥  for all [ ]p 0,1∈  

if and only if  for all ( ) ( )'k kP c P c≥ P∈ 1P  and for all identification cut-off { }1,..., *k k∈ . 

 

ii) ( )( ) ( )( )SD c' k* ; p SD c k* ; p≥  for all [ ]p 0,1∈  

if and only if  for all ( ) ( )'k kP c P c≥ P∈ 2P  and for all identification cut-off { }1,..., *k k∈ . 

 

The implication of this proposition is that, even when the dimension deprivation curves 

intersect, they allow us to obtain robust conclusions in a wide set of counting measures 

restricting the set of identification cut-offs. Since not all the admissible cut-offs are equally 

meaningful in poverty measurement, this result may be quite useful in empirical applications: 

when two deprivation vectors can not be unanimous ranked for all cut-offs, concentrating on 

the poorest people can lead to conclusive verdict.  
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CONCLUDING REMARKS 

A counting approach based on the number of deprivations suffered by the poor is quite 

an appropriate framework to measure multidimensional poverty with ordinal or categorical 

data. 

The choice of a cut-off to identify the poor, and a poverty measure to aggregate the data 

are two sources of arbitrariness and different selections may lead to contradictory 

conclusions. In this paper we derive dominance conditions in order to obtain unanimous 

rankings in a wide set of counting measures, and a set of identification cut-offs. Specifically 

we show that the orderings obtained from the multidimensional headcount ratio and from the 

adjusted headcount ratio are equivalent to agreement in two a wide set of counting poverty 

measures and correspond to what in the literature are known as first and second degree 

dominance conditions respectively. 

The implementation of these conditions is based on two different types of dimension 

deprivation curves, which guarantee unanimous rankings of vectors of deprivation counts 

when they do not intersect. And, even if the curves cross, additional results are derived that 

lead to conclusive verdicts by restricting the admissible cut-offs in the identification of the 

poor. Thus, these curves become a useful way to determine the bounds of the number of 

dimensions for which counting poverty comparisons are robust and have been shown to play a 

key role in making poverty comparisons when the data is ordinal. 

Empirical applications and the implementation of statistical inference tests are left for 

future research. 
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