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What does an equal sacrifice tax look like in the case of a rank-dependent
social welfare function? One's tax liability evidently becomes a function of
one's income and one's position in the distribution in such a case, but not
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his paper "A controversial proposal concerning inequality measurement",
Journal of Economic Theory 1988, but focused only on a poll tax). In this
paper, we determine the properties of the equal sacrifice tax for a wide class
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1. Introduction

The equal sacrifice principle in its most common form, that of equal absolute
sacrifice, states that everyone should give up the same amount of utility when paying
income taxes. When applying this principle, economists tend to assume either that
everyone has the same utility function or that there is a benevolent social planner, whose
welfare function is used when calculating the sacrifices to be made by taxpayers.

One function of this paper is to review the literature that has grown up around the
equal sacrifice principle, which is quite an old principle.! This literature mostly uses a
utilitarian framework of analysis — necessarily so, one might think, since a utility of
income function is the essence of the approach. However, notwithstanding this, Young
(1988) has shown that the equal sacrifice principle can be justified on the basis of non-
utilitarian concepts of distributive justice, and Yaari (1988) has shown that the principle
can also be articulated in terms of a rank-dependent (linear) social welfare function.

L This principle was developed from the first of Adam Smith’s (1776) four “canons of taxation” (that
taxation should be equitable) by, inter alia, Mill (1848), Carver (1895), Edgeworth (1925) and Pigou
(1932).



The equal sacrifice aspect of Yaari’s paper has attracted very little attention. A
main function of the present work is to re-examine the question of equal sacrifice taxes
for rank-dependent social welfare functions, indeed to recast the appropriate criterion in
terms of a more general, “mixed” class of social evaluation functions. These social
evaluation functions invoke a social utility-of-income function, and they also attribute
weights, giving systematically differing social importance to different people’s positions
in the income distribution. We re-examine in particular an old question, much addressed
in the utilitarian literature: whether an equal sacrifice tax is necessarily progressive. In the
new context, this proves to be a more complex question to answer, requiring simulation.

First, the simulations confirm the already well-known finding that utilitarian taxes
are regressive, flat or progressive at all income levels for given parameter values.
Second, the rank-dependent social welfare functions tend to generate equal sacrifice taxes
that are overall progressive, but not progressive at all income levels. Third, the “mixed”
social evaluation functions result in equal sacrifice taxes that may be overall progressive
or regressive, but again are not necessarily so at every income level.

The paper proceeds as follows. In Section 2, we briefly review the utilitarian-
based equal sacrifice literature. In Section 3, we turn to the issue of rank-dependence in
the social welfare function. The equal sacrifice criterion has to be respecified in the
presence of rank-dependence. We put forward the appropriate reformulation - in fact for a
larger class of social welfare functions than the linear and rank-dependent ones of Yaari
- a “mixed” class which includes the purely utilitarian social welfare functions as a sub-
class. (The reformulated equal sacrifice criterion collapses back to the familiar one for
this subclass). Section 4 concludes the paper with a summary of its main findings.

2. Utilitarian Equal Sacrifice Taxes

Equal sacrifice can mean one of three things: equal proportional, equal absolute,
or equal marginal sacrifice. In common with most of the recent literature, we shall
consider here mainly the absolute version of the equal sacrifice principle.? Thus, if U: R*
— Ru{-} is the utility-of-income function, common to all taxpayers or imposed upon
them from the outside by a social planner, and assumed strictly increasing and
continuous, then the criterion for the tax schedule t : R* — R to be an equal absolute
.sacrifice tax is that
¢)) Ux)-U(x—-t(x)=uy Vxzx,
for some u, > 0 and some Xo > 0. If U(0) # -0, (1) cannot hold for all incomes x € R".
The range of x for which (1) holds must be bounded away from zero in this case, else if

2 Mill (1848, book V, chapter 2) argued for an equal absolute sacrifice, whilst Cohen Stuart (1889) argued
for the proportional version of the equal sacrifice principle. Carver (1895, pp. 96-97) considered both the
marginal and absolute versions of the principle, and Edgeworth (1897) favored the marginal version. The
proportional version is merely the absolute version in disguise: a tax schedule t(x) engenders equal
proportional sacrifice for some utility function V: R* — R if and only if the self-same schedule engenders
equal absolute sacrifice for the utility function U = exp(V). See Musgrave and Musgrave (1984, chapter 11)
for a neat graphical analysis of equal sacrifice criteria.
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we let x — 0 in (1), we would find that t(0) > 0, an impossible state of affairs. The
quantifier Vx > x, in (1) can be read as “for the incomes x of all taxpayers”, since only

for such persons is t(x) > 0 as (1) demands.?

What form of taxation is implied by a utilitarian equal sacrifice principle? For one
thing, we can say that if U(x) is differentiable, then so too is t(x), since from (1):

Q) X)) =x-UU-uy) VYrxzxg

This would in particular rule out a piecewise linear tax function. One can infer:

3) 0<tix)<x & 0<t'(x)<1l Vx2x,

from (1). The first part says that the tax is admissible on grounds of ability to pay. The

second property has been termed incentive preservation (ensuring that x-t(x) increases
with x). If U(x) is linear, the equal sacrifice tax is lump sum:

(4) Ux)=ax+b, a>0 = t(x)=u0a Vx > x,
(from which, x; > u% can be inferred). If U(x) is logarithmic, the tax is proportional:

(5) U =alnx +b, a>0= (x)=[l-e™*}x Vx2x

In the earliest literature, it was believed that equal absolute sacrifice justified only
proportional or progressive taxation.® Samuelson (1947, p. 227) showed that if marginal
utility is sufficiently declining as income rises, equal absolute sacrifice does indeed
ensure progression — in fact, strict progression:

(6) XU Vx2xg = —d—(@po Vx> x)
U'(x) dx x
but regression is also compatible with equal absolute sacrifice: see on.

The question naturally arises, what sort of taxes can be rationalized as equal
sacrifice taxes for some utility function U(x)? There are two strands of literature on this.
One is theoretical, in which given properties of tax functions are identified with
properties required of the associated utility functions, and existence theorems are
developed. The other is empirical, seeking to fit actual tax systems exactly or
approximately to the equal absolute sacrifice principle, using an appropriate utility
function from a chosen parametric family.

Young (1987) discusses a “re-indexing property” of some tax schemes. This is
where the tax t(x) gets indexed to real growth and/or inflation, becoming t*(x) = Pt(x/P)
where P is the appropriate deflator. If, when t(x) is an equal sacrifice tax for some utility
function U(x), so is t*(x) (with maybe a higher or lower level of sacrifice, depending on

3 Carver saw that the poorest would in general have to be exempted from an equal sacrifice tax. Mill argued
that certain forms of income (e.g. subsistence needs and savings for retirement) should be exempted from
tax. Pigou (1932, chapter 9) pointed out that an equal sacrifice tax on the better-off could finance transfers
to the less well-off, also supporting the use of a bounded range in (1) to specify the equal sacrifice tax.

* Young (1987) cites Cohen Stuart (1889) and Edgeworth (1897) as already pointing out that this is a
fallacy.



the context), for the same utility function U(x), then, Young shows, U(x) must take the

form
1-e

7 Uy) = a>
1—-e

These utilities belong to the Atkinson (1970) family, having constant inequality aversion
parameter e > 0. The corresponding equal sacrifice tax function is either flat, as in (5) (for
e = 1), or takes the form:

+b, 0<e#l, U(x)=alnx +b, a>0

- !
®) tx)==x- [xl—e - (—1@]%—9 Vx> xg
a

(1-eug

1
for e #1. Perforce, xg >( )A‘e when e < 1. It is readily verified that t*(x) =

Pt(%)) Vx 2 xo* = Pxq is an equal absolute sacrifice tax for the same utility function,

and for the sacrifice level uy* = Pl_euo . It also follows from (8) that

9 rE)=1-[ _He gy X

X
from which t(x) is progressive if e > 1, proportional if e = 1 (as in (5)), and regressive
(above xo) if e < 1. Notice that the value of b in (7) does not affect the tax function, and

the value of a in (7) only matters through the term u—o; we set @ =1 and b = 0 in all that
a

follows.

What is the connection between the sacrifice level uy, total tax revenue, inequality
and social welfare? As in Atkinson (1970), let pre-tax social welfare be

(102) Wy = [U(x)f(x)dx
0

in case income is continuously distributed with frequency density function f{x), and
correspondingly,

1 N

(10b) Wy = WZU(xi)
i=1

in the case of a discrete income vector X = (x{,Xy,..xy). If Wy_ris welfare after tax,
then the welfare loss from application of the equal sacrifice tax is
(1) AW =Wy -Wx_r =[1-F(xo)lug
(i.e. areduction of uy per taxpayer).5 For the utility functions U(x) in (7), with e > 1 (i.e.
in the non-regressive case), we may write

(12) Wy =U(uxll-1x@) & Wy r=U((l-g)ux1-Ix_1(e)])

where 4y is mean pre-tax income, guy is the per capita tax payment (so that g is the
fraction of all income taken in tax, known as the fotal tax ratio), and Iy (e)and Iy_r(e)
are the pre- and post-tax Atkinson (1970) inequality indices for inequality aversion e. The

5 Equation (11) does not allow for the taxation of incomes below the threshold x, by other means. See on.
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overall progression (henceforth progressivity) of the tax system can be measured in terms
of these indices as:

13 %)= Ix(@)—Ix_r(e)

1-Tx(e)
using the summary index of Blackorby and Donaldson (1984). Combining (11) to (13),
we have®

(14a) AW =[1-F(xg)luo = Wy {1-[1-g)(1+ 1P ()]}
ife#1, and

(14b) AW =[1-F(xy)]ug= —4n [(1~g)(1+HBD(1))]

when e = 1. Hence the welfare reduction is higher the greater the (required) tax yield, and
lower the more progressive is the tax system. Clearly uy, g and IT?P(e) are all
interdependent (and IPPP(e) < 0 fore < I).

Figure 1 shows the equal sacrifice tax functions we obtained by simulation for the
cases e = %, 1, 1%, 3 using 10,000 income values x randomly drawn from a lognormal
distribution, the one for which £n x ~ N(0, o) where exp(6) = 33.818 is median income
and the variance of logarithms is 6% = 0.154, and when the total tax ratio is g = 0.15 JIn
each panel of Figure 1, the tax level t(x) is plotted as a heavy line and the average tax rate
t(x)/x is plotted as a pale line, against income x measured as a fraction or multiple of the
median. In all of the simulations, we constrained average tax rates to lie between 5% and
50% in order to retain a degree of realism in the results, and continued the tax at a 5% or
50% proportionate rate outside of the range indicated for purposes of illustration. In
accord with the theory, the equal sacrifice tax is regressive for e = 2, proportional for e =
1, and progressive for e = 1% and e = 3. Notice that progressivity 115° (calculated for
the extended equal sacrifice tax) increases as e increases.

¢ From (12), ,uX[l—IX(e)]=Ue_1(WX) & (1—g),uX[l—IX_T(e)]=Ue_1(WX—T), and from (13),

-1
_ BD . _(-guxl-IxT (ey _Ug Fx_T1)
(1-g+II77 (el e [1-1x ()] %e_l ) . The results

in (14a)-(14b) follow using (7) (witha =1, b=0).

7 These values of 6 and o® were selected for realism. The lognormal distribution they imply was found by
Harrison (1981) to fit the UK distribution of gross weekly earnings in the year 1972. The average tax rate
in the UK in 1972 was approximately 15% (Hutton and Lambert, 1980, pp. 902-903).
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Figure 1: Utilitarian equal sacrifice taxes for (a) e =%, (b)e=1, (c) e =
1%, and (d) e = 3. The Blackorby-Donaldson progressivity indices are
(2) I = -0.0066, (b) [1B° =0, (c) IT?° = 0.0159 and (d) I1°° = 0.0759.

Let t;(x) be the equal sacrifice tax as in (5) or (8) for inequality aversion e; and
sacrifice level ug;, and let t5(x) be the corresponding equal sacrifice tax for inequality
aversion e, > e; and sacrifice level ug,. It is easily shown that, whatever the two sacrifice
levels ug; and ug; may be, t1(x) and ty(x) can cross at most once, with t;(.) crossing ta(.)
from below if at all.® In particular, if these two taxes raise the same revenue, then the
schedules must cross exactly once. This means that, for an equal absolute sacrifice
income tax, post-tax inequality is unambiguously reduced when the inequality aversion of
the social evaluator increases, given a constant revenue re:quirement.9

Young (1988) questions utilitarianism as the basis of the equal sacrifice principle,
showing that if a tax function t(x) satisfies certain “much more primitive concepts of
distributive justice” (ibid., p. 322) then a utility function U exists relative to which t(x) is

t2(x)]e2
X

¥ From (9), #;'(x) =1-[1 —w]‘ﬁ
X

and t5'(x)=1-[1- . It follows that, if ¢;(y) =15 (»)for

some y, then #{'(y) < t5'(») . Hence these schedules can cross at most once, as described.

® The single crossing property of Hemming and Keen (1983) shows this. See also Lambert (2001, p. 231),
Buchholtz et al. (1988) and Moyes (2003) for more general consideration of the inequality-reducing
properties of equal absolute sacrifice taxes.



an equal absolute sacrifice tax. An incentive-preserving schedule #(x) in fact only needs to
(a) be strictly monotonic and (b) satisfy the composition principle (two technical
properties from allocation theory) for this result.'®

In a powerful piece of analysis, Ok (1995) shows that any continuous and strictly
increasing tax function t: R" — R" satisfying three innocuous properties: (i) t(0) = 0, (ii)
0 <t(x) <x Vx>0 and (iii) that the mapping x — x — t(x) be surjective, can in fact be
rationalized as an equal absolute sacrifice tax for some strictly increasing and continuous
utility function U: R™ — R (with xo set to zero in (1)), if and only if t(x) is incentive
preserving. He makes the point that the resulting utility function may be normatively
unacceptable (for example if highly convex), and goes on to prove that a convex tax
function t(x) satisfying his postulates is an equal sacrifice tax for a concave utility U
under a mild additional restriction.'’ Mitra and Ok (1996) show that among piecewise-
linear tax schedules, essentially only the convex ones are equal absolute sacrifice taxes if
the utility function is required to be differentiable near the origin. D’Antoni (1999)
extends Mitra and Ok’s analysis to show that a two-bracket piecewise linear tax function,
convex or not, is an equal sacrifice tax, and moreover with respect to an entire class of
concave utility functions.'? In Mitra and Ok (1997), the piecewise linearity assumption
driving this result is dispensed with, and the authors show also that some non-convex
progressive tax schedules are, and some are not, equal absolute sacrifice taxes for
concave utility functions.

The equal sacrifice criterion has also been explored empirically. Mitra and Ok
(1996) demonstrated that the statutory personal income tax codes in Turkey between
1981 and 1985, and in the USA between 1988 and 1990, though progressive, were not
equal absolute sacrifice taxes for amy concave utility function U(.). Young (1990)
successfully modelled the U.S. statutory income tax codes of 1957, 1967 and 1977 as
equal absolute sacrifice taxes for isoelastic utility functions U.(x) noting, however, that
“at the lower and upper ends of the distribution, the ..[isoelastic] model does not fit the
data well”. Gouveia and Strauss (1994) modelled effective U.S. income taxes annually
from 1979 to 1989 as equal absolute sacrifice taxes, also for the utility function Ug(x)."

' The two questions to which technical properties (a) and (b) provide affirmative answers are these, in
plain English: “If the total tax burden increases, does everyone pay more? Is the increase shared in a fair
way?” (ibid., p. 322). That these properties hold for an equal sacrifice tax #(x) is easy to see: (a) if an
increase in total revenue is required while retaining equal sacrifices, plainly everyone’s tax liability must
rise; and (b) if a second layer of tax s(3) is levied on net incomes y = x — #(x) to raise additional revenue,
then the composite tax s o t equalizes sacrifices if and only if the “surtax” s(y) does. Young’s achievement
is to obtain a converse result, that if generalized versions of (a) and (b) hold for a tax t(x), then a utility
function exists relative to which t(x) equalizes sacrifices.

' This restriction is that t(x) be differentiable in a neighborhood of x = 0, with 0 < t'(0) < 1.

12 There is no incompatibility with Mitra and Ok’s finding, because the utility functions D’Antoni comes up
with all have infinitely many points of non-differentiability near the origin.

B Young found that the inequality aversion parameter values e = 1.61, e = 1.52 and e = 1.72 best fitted the
1957, 1967 and 1977 statutory codes in the US. He also obtained fits for Germany in 1984, Italy in 1987
and Japan in 1987, with e = 1.63, e = 1.40 and e = 1.59 respectively, but neither the US nor the UK
provided a satisfactory fit in 1987. Gouveia and Strauss’s best-fit values of e for the US lay between 1.72
and 1.94



In this brief perusal of the utilitarian equal sacrifice literature, the quantifier
Vx> x, in (1) has played a role. In the theoretical work of Young (1987, 1988), Ok

(1995) and Mitra and Ok (1996, 1997), equal sacrifice is held to apply universally, i.e. xg
is set to zero throughout, forcing the restriction U(0) = -oo upon the respective models.™*
Yet early writers such as Carver (1895) and Pigou (1932) were content to have the equal
sacrifice principle applied over a range that is bounded away from zero (xp > 0 in (1),
recall footnote 3), and even Young (1990) found that his equal sacrifice model did not fit
in the tails of the US income distribution. Once xy > 0 is allowed in (1), utility functions
U(x) are admitted into the analysis for which U(0) is finite. Examples are the functions
U.(x) for e < 1. The tax schedules corresponding to these, along with some of the
schedules highlighted in the work of Mitra and Ok (1996, 1997) and D’ Antoni (1999) for
which xp = 0, are regressive (and one of them is shown in Figure 1(a)). In the remainder
of the paper, we extend the equal sacrifice concept to rank-dependent and “mixed” social
welfare functions, and here too, boundedness of the range of applicability will be
appropriate.

3. Rank Dependence and Equal Sacrifice

Yaari’s (1988, p. 381) proposal to "use the tax structure to retrieve the policy
maker's preferences through the Principle of Equal Sacrifice” is similar in spirit to some
empirical methods developed from utilitarian approaches, which we have reviewed, but
there is a twist. Yaari introduces a family of social welfare functions which are linear in
peoples’ incomes and also rank dependent. Associated with each such welfare function is
a measure which Yaari characterizes as the “equality mindedness” of the social decision
maker, and this becomes an input to the determination of the tax function. In this section
of the paper, we first explore the equal absolute sacrifice principle in the context of
Yaari’s family of social welfare functions, and then we re-examine matters using a
generalized social welfare formulation in which utilitarianism and rank-dependency both

figure.

3.1 Linear Social Welfare Functions and Inequality Indices.

Let ¢:[0,]] > R be increasing and twice continuously differentiable, and define

an evaluation function Yy over the pre-tax income distribution by:
0

(152) Yy = [xp'(FG)f (D)

0
in case pre-tax income is continuously distributed with frequency density function f{x)
and distribution function F(x), and correspondingly, by:

¥ If U(0) is finite and x, = 0 in (1) then, as already noted, t(0) > 0 is implied. In that case, a person with
zero taxable income suffers a tax burden that may eat into the very necessities of life. For J.S. Mill, for
example, x = 0 connotes a person living at the subsistence level (perhaps with retirement savings set aside).
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1Y
(15b) Yy =—> x%¢'(p;)
NiT
in the case of a discrete income vector X = (x;,x,,...xy) where, if no two of the x;’s are

the same, person i’s rank is p; = — 1% With certain restrictions on ¢, Yxdefines a Yaari
N

(1988) social welfare function, henceforth YSWEF. Yaari associates an “equality rating”
E y with Yy . This is defined by:

Y
s Byt

Changing the variable of integration in (15a), Ex can be written
1 1
17 Ey = (I) Lx'(p)¢'(p)dp = (I) Lx (p)[-¢"(p)ldp

where p = F(x) and Lx(p) is the pre-tax Lorenz curve. Yaari defines the “local equality-
0], as =22 =o'l

mindedness” of the social decision-maker, at a percentile p €[ )
@\p

The restrictions on ¢ are most easily understood in terms of Yaari’s equality rating
measure.'® First, in order that an equal distribution have an equality rating of 1, we
require:

1
(18) I @' (p)dp =1

Second, in order that an extremely unequal distribution have an equality rating of 0, we
17
require:

(19) p'1)=0
Third, in order that the evaluator be “equality-minded”, we require ¢ to be concave:

(20) ¢"(p)<0  Vpel0]]

With this last restriction, M y =1-Ey becomes a Lorenz-consistent inequality index
((17) shows this). In fact, M y, so defined, belongs to Mehran's (1976) "general class of

linear measures of income inequality". These are weighted areas between the Lorenz
curve and the line of equality, of the form:

PAssuming a domain in which no two incomes are equal is not essential though it simplifies the
assignation of ranks, and also incidentally makes Yy differentiable in each x;. Most of the analysis to follow
will be demonstrated for the case in which incomes are continuously distributed.
'% Yaari (1988) in fact defines his SWF in terms of ¢'(p): he does not enumerate properties of ©.

7 To see this, consider a discrete distribution X in which N-1 persons have € each and person N has Ny -

(N-1)e. The Lorenz curve slope is — forp <(1- —) and Nfl-(1- -—-) —] thereafter. From the discrete
Hx N N nx
g N
version of (17), E ¥ =T To'( P, )+ (1- ———-—)qp (1). The first term is zero from the discrete version of
Nu y i=1 Hx

(18). As ¢ — 0, the distribution X approaches the extremely unequal one, and Ey — ¢'(1).

-9.



1
21 My = (I) [p — Ly (p)Ik(p)dp

1
where k(p) = 0 ¥p € [0,1]. In our context, k(p) = -¢"(p), hence [ pk(p)dp =1. In fact, every
0

YSWEF is of the form

(22) Yy =pux[l-My]

where M y is a Mehran index, and conversely, every Mehran index M x defines a
YSWF, as Yy = uy[l-Mx].'> "

The best-known Mehran indices are the Gini coefficient G, for which k(p) =2Vvp,
and the extended Gini coefficient G(v), v > 1, of Weymark (1981), Donaldson and
Weymark (1980, 1983) and Yitzhaki (1983), for which k(p) = v(v-l)(l—p)v'2 (the case v =
2 being that of the regular Gini). The corresponding o-functions for the associated
YSWFs are: o(p) =2p — p” for the Gini and @(p) =1 - (1-p)" for the extended Gini.

3.2 Equal Absolute Sacrifice Income Tax Functions for YSWFs

Consider a discrete pre-tax income vector X = (xy,%;,.xy) and the YSWF defined
as in (15b). Each dollar taken in tax from person i without disturbing the overall ranking

. . 1 .. .
of income units causes a loss of welfare of ;(p’( p;) . If the tax schedule #(x) is incentive-

preserving, as in (3), then there is no reranking of income units in the transition from pre-
tax to post-tax income; we could imagine the taxes to be subtracted sequentially, dollar
by dollar from all persons whilst maintaining the ranking at every stage. Then person i

1 .
accounts for a loss of —1(x,)¢'( p;) from pre-tax welfare, and the total welfare loss is
N

N
%Zt(xi)go‘( p;) » call this ¢ > 0. For equal sacrifices, we require:

1
(23) tx)e'(p) =c¢ i=12,.N

1
18 Given a weighting scheme k(p) > 0 that defines a Mehran index M y as in (21), where [ pk(p)dp =1
0

1

(one of Mehran’s requirements), define ¢'(p) = [ k(g)dq : (18)-(20) are satisfied.
p

1 Because k(p) = -0"(p) is unrestricted except for being positive, (17) shows that in fact Lorenz
dominance of one distribution over another is equivalent to dominance in terms of Yaari’s equality rating
for all Yaari SWFs. Further, multiplying in (17) by the mean, we obtain Yg = [o' GL&(p)[-9"(p)1dp where
GLg(p) is Shorrocks’s (1983) generalized Lorenz curve; whence generalized Lorenz dominance of one
distribution over another is equivalent to welfare dominance for all Yaari SWFs. We thank Shlomo
Yitzhaki for pointing out that these two important equivalences do not appear to have been noted in
existing literature.
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There is immediately a problem with this specification when i = N, since ¢'(pn) =0
from (19). Note that ¢’ (p) > 0 Vp e (0,1) for the Gini and extended Gini weighting
functions. We must therefore restrict the equal sacrifice requirement to exclude the

richest individual(s) in the rank-dependent case:*°

24 {(x) = ——— Vx:F(x)#1
(24) (x) 2 F ) ()
This is not so in the utilitarian case, and constitutes a significant distinction between the
two approaches.?’ Notice, too, that for the rank-dependent case, a person’s tax liability is
a function of her income x through her position F(x) in the distribution in question.

If an observed income tax function t(x) is assumed to equalize sacrifices in the
Yaari sense, the equality-mindedness of the social evaluator can be inferred using (24).
This is the essence of Yaari’s proposal. An example is provided by the case of a lump
sum tax, assumed to be equal sacrifice. Let t(x) =1t >0 Vx: F(x)#1. Then from (24),

0'(p) S Vp € (0,1), and now from (18), ¢ = t and zero equality-mindedness can be
T

inferred: [-9"(p)] = 0Vp. Only if there is no concern for inequality, can a lump sum tax
cause equal sacrifices all round.*

The equal sacrifice recipe in (24) ostensibly covers all income recipients but the
very richest. However, this recipe may be inoperable at either extreme of the income
distribution, or both, since admissibility on grounds of ability to pay (0 < t(x) <x Vx) is
not guaranteed by (24). Moreover, (24) is constructed assuming incentive preservation (0
<t'(x) <1 vx), and may not of itself guarantee that property (see on). Let us then relax
the recipe somewhat, in fact slightly further than we needed to do.in the utilitarian case.
Specifically, we shall introduce upper and lower threshold income levels to delineate the
region in which equal sacrifice must hold:

25 - ¢
23 )= F@)

for some xp > 0 and some x; such that F(x;) #1.

Vx € [xg,1]

The welfare loss after application of this tax is ¢ per taxpayer:>*

2% We also exclude extremely unequal income distributions from further consideration at this point , since
for such distributions the quantifier “ Vx : F(x) # 1” simply means “for x =0".

2! Note, though, that Young’s (1990) utilitarian equal sacrifice tax as in (8) did not fit in the upper tail of
the US income distribution.

o0

2From(24), p=F(y)<1= ¢'(p) = - , and ¢ can be calculated using (18): ! = ILf(x)dx .
1y) c  0tx)

» Yaari explains this finding in these words: “A policy maker who chooses such a tax policy (and finds it
politically feasible) displays complete disregard for equality differences of income profiles. For such a
policy maker, all income profiles will indeed have the same equality rating” (ibid., p. 396). In the utilitarian
case, it is linearity of the welfare function which yields lump sum equal sacrifice taxes (recall (4)).
** The analysis at this point neglects the welfare consequences which would follow from the taxation of
incomes at the extremes of the distribution by non-equal-sacrifice methods — but see on.
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(26) AY =Yy =Yy r =[F(x))—F(xo)le=px[1-Myx]-(1-g)ux[1-Mx r]
Measuring progressivity in terms of pre- and post-tax Mehran indices, a la Blackorby and
Donaldson (1984):

@7 oM _Mx-Mxy-r
1-My
we find that
(28) AY =[F(x)—F(xy)le = Yy.[g —(1—-g)ITV]

The implications for welfare are similar to those in the utilitarian case: the welfare
reduction is higher the greater the (required) tax yield, and lower the more progressive is
the tax system. Clearly ¢, g and IT" are all interdependent, and 7" < 0 is possible.

In the case of the Gini-based YSWF, the equal absolute sacrifice tax is obtained by
setting ¢'(p) = 2(1-p) in (25):

(29) t(x) = m Vx e[xg, %]

and perforce in this case xp > —. Integrating in (29),

1 e 1-F
I e o e

which sets an upper limit upon x;, since the logarlthm becomes unbounded as F(x;) — 1,
whereas g €[0,1).

In the case of the extended Gini, setting ¢'(p) = v(1-p)*” in (25) we have:

c
(31) l‘(X)—:m VXE[X(),XI]

and hence x> <. Integrating in (31), we obtain:
v

(32) gu _c Fx) dp __c 1 B 1
Ty @) 0= [L-F)P? (1= F(xy)]”

if 1<v#2 (and (30) if v =2). For v > 2, this sets an upper limit upon x;.

Figure 2 shows the rank-dependent equal sacrifice tax functions for the cases v =
1Y%, 2,2%, 5 for the same lognormal income distribution as was used to construct Figure
1, and when the total tax ratio is g = 0.15, also as before. In each panel of the top portion
of Figure 2, the tax level and average tax rate are shown against income relative to the
median, and in the lower portion, these same taxes and average rates are shown as
functions of position F(x) in the income distribution. In all cases, we terminated the equal
sacrifice prescription at certain income levels, in order to keep the average tax rate within
the 5% - 50% range as for the utilitarian case considered earlier, and we again continued
the tax function at the highest income levels as flat, with a 50% average rate, rather than
terminating it completely (failure to do this would necessitate a higher sacrifice level and
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greater tax burden on all other income units in order to meet the fixed yield requirement).
The tax is progressive at all income levels when v = 5, but the average tax rate is U-
shaped in all other cases, with the poorest income units experience high but declining
average rates. As the lower portion of Figure 2 shows, the equal sacrifice prescription
applies to more than 90% of the population for low v; as v increases, the tax structure
becomes “highly polarized” (Yaari’s words, ibid p. 382), in that most taxpayers are
driven to one or other extreme of the permitted range for the average tax rate.
Progressivity ITV (calculated for the equal sacrifice and flat extension tax taken together)
increases as v increases.

- (a) v=1.5 (b) v=2
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Figure 2: Rank-dependent equal sacrifice taxes for (a) v = 1%, (b) v =2,
(c) v = 2%, and (d) v = 5, as functions of income relative to the median
(top) and position in the income distribution (bottom). The Mehran
progressivity indices are (a) I™ = 0.0166 (b) ™ = 0.0720, (c) I =
0.0976 and (d) [T =0.1111.
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The tax function for v = 2 is that corresponding to the Gini-based YSWF. In Figure
3, we show the sacrifice profile %t(xi)(o'( p;) according to this YSWF (i.e. with ¢'(p) =

2(1-p)) for the utilitarian equal sacrifice tax function given in (8) and displayed in Figure
1 fore=1%,1, 1%, 3. When comparing the tax functions in Figure 1 to the one in Figure
2(b), it is clear that the two systems cannot result in the same sacrifice levels. The
relationship between sacrifice and income for the utilitarian tax, when sacrifice is
measured a la Yaari, has an inverse-U shape — increasing with income at low income
levels and decreasing with income at higher income levels. This sacrifice profile tells us
that the Yaari-sacrifice engendered by the utilitarian tax is judged to be highest around
median income. None of the utilitarian equal sacrifice literature has of course been able
to offer this perspective.

(a) e=0.5 (b) e=1
N @© |
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Figure 3: The sacrifice profile for the utilitarian equal sacrifice tax
functions of Figure 1, with sacrifice measured according to the Gini-based
YSWF.

Finally, we point out that, unlike the utilitarian case, for YSWFs there is a major
difference between the equal proportional and equal absolute sacrifice rules. Each person
i accounts for a welfare contribution of x;.¢'(p;)/N to Yx and a welfare loss of t(x;).0'(p;)/N
as a result of taxation. Thus, only a proportional tax with the required yield, t(x) = g.x
Vx, can engender an equal proportional sacrifice from all individuals in the Yaari
framework.
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3.3 Equal Sacrifice for “Mixed” Utilitarian and Rank Dependent SWFs

We now explore a doubly parametric family of “mixed” utilitarian and rank-
dependent SWFs, using an approach introduced by Berrebi and Silber (1981) and further
developed by Araar and Duclos (2005). Let

(33) Zx(e,v)= (f) Ue(¥)p,"(F(x))f (x)dx

where U,(x) is as in (7) (with a=1 and b = 0), and where ¢,(p)=1-(1-p)’,v>1,is
the weighting function which defines the extended Gini coefficient. Zy defined in this
way is in fact a YSWF, but one which is formulated in utility space rather than income
space. Hence Zy can equivalently be written as

(34) Zy(e,0) =W x (L~ M x (,0)]
where Wy (e) = J'U ¢(x) f (x)dx 1s utilitarian welfare a la Atkinson (1970), and Mx(e,v) is
0

an extended Mehran-type inequality index defined over utility levels. This family of
evaluation functions embeds the case of a “pure” (income-denominated) YSWEF:

(35a) e— 0= Zx(e,v) = ux[1-Gx(V)]

where Gx(v) is the extended Gini coefficient for the pre-tax income distribution X, and
also embeds the case of a “pure” utilitarian (rank-independent) SWF:

@5h) vl = Zy(ey) = Wy(e) =U,(uxll-Ix ()]
where Ix(e) is the Atkinson index of pre-tax income inequality.

N
The discrete version of (33) is Zx (e,v) = % Y Ug(x)¢'(p;) . If the tax schedule
i=1
f(x) 1is incentive-preserving, each person i accounts for a welfare loss of

_l-[U e(x;) = Ug(x; —t(x;)]¢'(p;) - The condition for equal absolute sacrifice becomes
N

(36) [U(x;) = Upg(x; — ()11 - p;)® 1 =§ i=12,..N

where c is the per capita sacrifice, which will depend on both e and v as well as the
revenue requirement. Attending to possible problems at the two extremes of the income
distribution, the “mixed” equal absolute sacrifice tax function must satisfy:

(37 Uy (%)= Upg(x—t(x)] = ¢ Vx & [xg,%]

o[l - F(x)P !
for some x9 > 0 and some x; such that F(x;) #1. This tax function can be written
explicitly, as:

c(l-e)
o[l F(x)° 71

Nee
(382) t(x)=x{ I-e_ ]

ife#1,and as
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~c
(38b) tx)=|1-e /) [1-F (P! x

when e = 1. Clearly the tax depends on both income x and position F(x) in these cases.
When e < 1, the restriction

(v-1) M
39) xg.[1—F(xg)] A_e) > {_c(l — e)}A
L

on xp is implied. Progressivity may be measured using the inequality index Mx(e,v), as
M x (e,v)—M x_1(e,v)

M, _
(40) ™ (e,v) = T

Figures 4a and 4b show the simulated mixed utilitarian and rank-dependent equal
sacrifice tax functions for the cases e = ¥, 1, 1%, 3 and v = 1'%, 2, 2%, 5 for the same
lognormal income distribution as was used to construct Figures 1 and 2, and when the
total tax ratio is g = 0.15, also as before. Figure 4a shows tax level and average tax rate
against income x, and Figure 4b shows these same taxes and average rates as functions of
position F(x) in the distribution.

It is striking that as e and v increase, the interval between the two cut-offs x¢ and
x; dictated by admissibility of the equal sacrifice prescription becomes smaller and
smaller. The plots of the average tax rate are perhaps easier to understand than those of
the tax level, since the cut-offs x¢ and x; provide ‘floors’ and ‘ceilings’ for the average
tax rate profiles but bring ‘cusps’ into the tax level/income relationships. For € = 1 (only),
which is the case in which U(x) is logarithmic, the equal sacrifice tax liability itself
actually decreases with income, from approximately the median onwards. This is in stark
contrast to the situation in the non-mixed (pure rank-dependent) setting, where taxes must
increase with income (see (24), also Yaari, ibid., p. 395). In the utilitarian setting, the
case e = | generated a proportional tax.

Table 1 specifies the progressivity measures IT7"(e,0) for the taxes illustrated in
Figures 4a and 4b. Progressivity increases in absolute value as either e or v increases
(with the other held constant). If e = 1 the tax is everywhere regressive, whilst if e > 1
the tax is everywhere progressive. In the utilitarian case, it was e = % that resulted in a
regressive tax. Here, for ¢ = %, the tax has regressive and progressive portions, but is
overall progressive.

v=1% V=2 v=2% v=>5
e=% 0.0348 0.0836 0.0944 0.0628
e=1 -0.0488 -0.1061 -0.1641 -0.3450
e=1% 0.0750 0.1019 0.1078 0.1145
e=3 0.1038 0.1116 0.1136 0.1164
Table 1: Progressivity IT(e,v) of the mixed equal sacrifice income

tax for e="%, 1, 1%, 3 andv= 1'%, 2,22 and 5.
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Figure 5 contrasts the equal sacrifice tax functions that arise in the utilitarian case
(when e =4, 1, 1}3, 3) with those that arise in the Gini-based mixed case (when v =2 and
also e =%, 1, 1'%, 3 ). There are considerable differences between the two tax functions
for e = 2 and e = 1, but as e increases further they become more similar. This result is
driven to some extent by our chosen constraint on average tax rates, that they should lie
between 10% and 50%. Clearly, the rank-dependent perspective allows us to characterize
arange of potentially interesting and unfamiliar tax schedules as equal sacrifice taxes.

(a) e=0.5 (v=2) (b) e=1 (v=2)
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Figure 5: Comparison of utilitarian equal sacrifice tax functions and
Gini-based mixed equal sacrifice tax functions, for inequality aversion
values e =%, 1, 1% and 3.

Conclusions

This paper summarizes previous literature on equal sacrifice taxes. Most of that
literature has focused on the class of utilitarian social welfare functions. Yaari (1988), in
contrast, discusses the equal sacrifice principle in the framework of a rank-dependent
social welfare function. While the properties of utilitarian equal sacrifice taxes are well-
studied by now, the properties of rank-dependent equal sacrifice taxes have not yet been
investigated in depth.

We compare the properties of the equal sacrifice taxes for rank-dependent and
“mixed” social welfare functions to those generated for utilitarian social welfare
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functions. Previously studied utilitarian approaches generate equal sacrifice taxes that are
progressive, flat or regressive at all levels of income. In comparison, the rank-dependent
equal sacrifice taxes are overall progressive, but in general the average tax rate is a U-
shaped function of position. The “mixed” social welfare functions, which are concave
functions of individuals’ income levels and also are functions of their positions in the
income distribution, result in equal sacrifice taxes which, in our simulations, are
progressive at all income levels for e > 1 and regressive at all income levels for e = 1.
Only in the case e = %, did we find the average tax rate to be a non-monotonic (U-shaped)
function of income. The Gini-based mixed equal sacrifice taxes differ markedly from the
corresponding utilitarian ones for low values of inequality aversion e, but become quite
similar as inequality aversion is increased. Sacrifice for the utilitarian taxes, as judged by
the Gini-based YSWF, is maximal at around median income.
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